Как диагностировать карбюраторный двигатель

Содержание
  1. Диагностика карбюраторного двигателя
  2. Когда нужна диагностика системы питания карбюраторного двигателя?
  3. Порядок и особенности диагностики карбюраторного двигателя
  4. Диагностика системы пуска и питания карбюраторного двигателя при формировании богатой смеси
  5. Диагностика карбюраторного двигателя: система питания
  6. Система питания двигателя с карбюратором: особенности и неполадки
  7. Неисправности системы питания карбюраторных моторов и диагностика
  8. Что в итоге
  9. Диагностика карбюраторных двигателей
  10. Понятие о диагностике двигателя. Параметры технического состояния механизмов двигателя (структурные параметры). Диагностические признаки и диагностические параметры. Процесс диагностирования двигателей. Охрана труда при ТО и ремонте автомобиля.
  11. Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Диагностика карбюраторного двигателя

Содержание статьи открыть закрыть

Сегодня мы расскажем, как проводится диагностика карбюраторного двигателя и когда она нужна, особенности диагностики систем питания и пуска мотора.

Карбюраторный двигатель отличается от других ДВС, используемых на современных авто, строением системы питания. Процесс диагностики его основных компонентов (ШПГ, зажигание, газораспределительный механизм) аналогичен инжекторному мотору. А вот диагностирование топливной системы имеет свои нюансы. Именно на ней и стоит остановиться.

Материал подготовлен специалистами сайта Skrutit-speedometr.ru

Когда нужна диагностика системы питания карбюраторного двигателя?

Провести диагностирование системы необходимо в следующих случаях:

  • Образование обедненной или богатой горючей смеси. Определить ее характеристики можно, просто вывернув свечи. Если на электроде и на юбке виден черный нагар, значит смесь богатая, если белый – бедная.
  • Неустойчивая работа карбюраторного мотора на оборотах ХХ. Причин может быть масса – от засорения жиклеров, до нарушения работы топливного насоса.
  • Наличие следов бензина на элементах топливопровода. Это говорит о нарушении их целостности и попадании воздуха в систему, что приводит к нарушениям в работе ДВС.

Порядок и особенности диагностики карбюраторного двигателя

Если вы заметили, что мотор плохо тянет, сильно греется, либо в карбюраторе слышны хлопки. Причиной этого может быть ранее зажигание, либо бедная смесь, которая может образовываться из-за нарушения подачи топлива. Проверить это можно в следующем порядке:

  • Отсоедините шланг после топливного насоса.
  • С помощью ручного привода, или путем вращения коленвала приведите его в действие. Если будет нормальная струя, значит все в порядке, дело не в насосе. Если нет – идем дальше.
  • Проверьте фильтр тонкой очистки. Из-за его чрезмерного загрязнения могут иметь место нарушения в подаче топлива.
  • Если с фильтром все в порядке, проверьте насос. Он может подсасывать воздух из-за неплотной затяжки резьбовых соединений или повреждения уплотнительных элементов. Если с этим все в порядке, потребуется его разборка. Возможно, дело в повреждении диафрагм, либо в поломке или ослаблении пружины.

Также причиной недостаточного уровня подачи топлива может быть и засорение жиклеров. Если оно имеет место, продуйте эти элементы обычным насосом. Чистка жиклеров проволокой и другими предметами не допускается, т.к. из-за этого их отверстия разрабатываются.

Диагностика системы пуска и питания карбюраторного двигателя при формировании богатой смеси

Если смесь богатая, говорить об этом может черный выхлоп и «взрывы» в выхлопной системе. Также при этом значительно увеличивается расход топлива.

В таком случае также следует проверить подачу бензина, как указано выше. Также потребуется демонтаж воздушного фильтра и проверка уровня топлива в поплавковой камере. В разных типах карбюратора это делается по-разному. Если он в пределах нормы, следует проверить клапан экономайзера и плотность закрытия игольчатого клапана. Также дело может быть и в пропускной способности жиклеров.

Если на трубопроводах и других элементах топливной системы видны следы топлива, это говорит о нарушении герметичности. Проверьте при этом надежность крепления элементов и их целостность.

Видно, что диагностика системы питания карбюраторного двигателя под силу многим. Главное – иметь некоторый опыт в ремонте авто.

Источник

Диагностика карбюраторного двигателя: система питания

Даже с учетом того, что автомобили, оснащенные карбюратором, представляют собой устаревшее решение, на территории СНГ такие машины продолжают пользоваться популярностью и прочно обосновались в нижнем ценовом сегменте. При этом относительно простая система питания карбюраторного двигателя требует отдельного внимания и нуждается в регулярном обслуживании.

Такой подход позволяет добиться стабильной работы ДВС на разных режимах, а также снизить расход топлива и уровень токсичности выхлопа. Далее мы рассмотрим основные неисправности системы питания моторов с карбюратором, которые обычно возникают в процессе эксплуатации ТС.

Система питания двигателя с карбюратором: особенности и неполадки

Как известно, автомобильный двигатель внутреннего сгорания, причем независимо от типа мотора и вида топлива (карбюратор, инжектор, бензин или дизель), работает на смеси топлива и воздуха.

Воздух «засасывается» двигателем из атмосферы, а горючее подается из топливного бака по топливным магистралям благодаря работе топливного насоса (механического или электрического). Так называемая топливно-воздушная рабочая смесь представляет собой горючее и воздух, которые смешиваются в строго определенных пропорциях. Затем происходит сгорание рабочей смеси в цилиндрах.

В дизеле впрыск топлива происходит прямо в камеру сгорания, где уже находится предварительно поданный, сжатый и нагретый воздух. Кстати, дизельный мотор имеет самую сложную топливную систему.

По этой причине диагностика системы питания дизельного двигателя является важной и ответственной процедурой, так как от исправной работы системы питания дизеля сильно зависит общий ресурс таких моторов.

  • Если же говорить о карбюраторе, это самое простое механическое дозирующее устройство, карбюраторный мотор имеет внешнее смесеобразование. Это значит, что в цилиндры поступает готовая рабочая смесь топлива и воздуха. Приготовление топливовоздушной смеси происходит в карбюраторе, куда подается как горючее, так и воздух.

Как правило, карбюраторы представляют собой механические устройства, то есть конструктивно не предполагается активное использование электронных компонентов. Исключением можно считать только отдельные поздние разработки, которые фактически являются переходными устройствами от карбюратора к моноинжектору. В таких карбюраторах присутствуют отдельные электронные исполнительные устройства.

Для лучшего понимания давайте рассмотрим основные элементы в устройстве карбюратора:

  • устройство имеет поплавковую камеру, которая отвечает за уровень горючего в карбюраторе.
  • также имеются жиклеры и эмульсионные трубки, наличие которых позволяет рассчитывать количество и дозировать воздух и топливо.
  • еще в конструкции следует выделить диффузор, который является трубкой (указанная трубка имеет узкую часть). В тот момент, когда открывается дроссельная заслонка, в диффузоре резко увеличивается скорость потока воздуха, что позволяет реализовать засасывание топлива в цилиндры двигателя.

Неисправности системы питания карбюраторных моторов и диагностика

Отметим, что такая система нуждается в регулярной подстройке и обслуживании. Дело в том, что если карбюратор будет работать неправильно (например, появились хлопки, «стреляет» в карбюратор) или произойдет нарушение смесеобразования, это отразится на работе ДВС.

В результате мотор может начать дергаться, пропадает мощность и тяга, силовой агрегат не набирает обороты, возможна нестабильная работа на ХХ и/или трудности с запуском на «холодную» или на «горячую», увеличивается расход горючего, двигатель дымит и т.д.

  • Прежде всего, чтобы понять, нужен ли ремонт системы питания карбюраторного двигателя, следует исключить проблемы с подачей воздуха до карбюратора (завоздушивание, загрязнение воздушного фильтра). Также нужно проверить целостность топливных магистралей, состояние топливного фильтра, качество горючего в баке, состояние бензобака, работоспособность бензонасоса.
  • Если с данными элементами все в порядке, горючее чистое и качественное, а также проверка системы зажигания ничего не выявила, тогда нужно проводить диагностику карбюратора. Первое, нужно проверить плотность соединения карбюратора и все его прокладки, штуцеры и т.д.

В норме уровень топлива должен быть на 18-19 мм ниже плоскости разъема корпуса и крышки поплавковой камеры. Проверка уровня производится через отверстие в корпусе поплавковой камеры, которое закрыто пробкой. Чтобы отрегулировать уровень, в ряде случаев необходимо изменить толщину прокладок, которые находятся под игольчатым клапаном в поплавковой камере.

Что касается регулировки холостого хода на карбюраторе, такие настройки выполняются при помощи упорного винта, который ограничивают закрытие дроссельных заслонок (винт количества смеси) и двумя винтами, которые позволяют изменить состав рабочей смеси топлива и воздуха (винты качества).

Что в итоге

Как видно, карбюратор даже с учетом своей простоты все равно нуждается в периодическом обслуживании. При этом важно понимать, что качество топлива также играет большую роль.

Напоследок отметим, что на территории СНГ многие автомобилисты активно используют карбюраторы Вебер (Wеber), Озон или Solex (Солекс, ДААЗ). Кстати, последнее устройство зарекомендовало себя в качестве надежного и проверенного временем решения, при этом поддающегося гибкой настройке.

Доработка и модернизация карбюратора. Основные недостатки системы карбюраторного впрыска и способы их устранения, настройка. Тюнинг впускного коллектора.

Особенности регулировки карбюратора Солекс. Как выставить уровень топлива в поплавковой камере, настроить холостой ход, подобрать жиклеры, убрать провалы.

Особенности карбюраторов ДААЗ, Вебер, Озон и Солекс. Преимущества и недостатки указанных моделей, основные отличия, установка на классические модели ВАЗ.

Почему двигатель простреливает в карбюратор, в выхлопную систему. Причины появления хлопков в карбюратор, дополнительные симптомы, устранение неисправности.

Устройство карбюратора, виды и конструктивные особенности. Поплавковый карбюратор, преимущества и недостатки.

Главная дозирующая система, переходная система во вторичной камере, разновидности систем холостого хода. Ускорительный насос, экономайзер и холодный пуск.

Источник

Диагностика карбюраторных двигателей

Понятие о диагностике двигателя. Параметры технического состояния механизмов двигателя (структурные параметры). Диагностические признаки и диагностические параметры. Процесс диагностирования двигателей. Охрана труда при ТО и ремонте автомобиля.

Рубрика Транспорт
Вид дипломная работа
Язык русский
Дата добавления 10.04.2005
Размер файла 58,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Диагностика системы охлаждения заключается в определении теплового состояния системы и её герметичности, а также в обнаружении неисправностей её элементов. О тепловом состоянии системы судят по склонности двигателя к перегреву (превышению температуры охлаждающей жидкости + 85 0 С) при его нормальной нагрузке.

Эффективность работы радиатора можно проверить по разности температур охлаждающей жидкости в его верхней и нижней частях (она должна быть в пределах 8-12 0 С).

Герметичность системы охлаждения (после визуальной проверки подтеканий) проверяют опрессовкой, создавая в верхней не заполненной части радиатора давление около 0,6 кГ/см 2 . Для этого применяют прибор, состоящий из воздушного насоса, манометра и устройства для соединения с заливной горловиной радиатора. При отсутствии подтеканий показания манометра стабильны. Если цилиндры двигателя сообщаются с системой охлаждения (имеются трещины в блоке цилиндров или повреждена прокладка), стрелка манометра будет колебаться.

Натяжение ремня вентилятора проверяют силой, необходимой для его прогиба в пределах 10-20 мм (прилагаемая сила должна быть 3-4 кГ).

Термостат проверяют в случае, если наблюдается замедленный прогрев двигателя после пуска или, наоборот, быстрый его перегрев. Для этого термостат погружают в ванну с водой. Воду подогревают, контролируя температуру термометром. Момент начала и конца открытия клапана должен происходить соответственно при температурах + 65-70 и + 80-85 0 С. Неисправный термостат заменяют.

Регулировочные работы по системе охлаждения включают: натяжение до нормы ремня вентилятора, устранение течи в соединениях с шлангами и через сальник водяного насоса, а также промывку системы охлаждения от осадков и удаление из неё накипи. Систему промывают струёй воды под давлением 2-3 кГ/см 2 при снятом термостате. Направление промывки должно быть противоположным циркуляции охлаждающей жидкости во время работы двигателя.

Накипь удаляют для улучшения теплообмена стенок системы охлаждения. По данным НИИАТа, при толщине накипи 1 мм интенсивность охлаждения снижается на 25%, мощность на 6%, а расход топлива увеличивается на 5%. Накипь удаляют при помощи химических растворов. Хорошие результаты даёт промывка раствором соляной кислоты с ингибитором, смачивателем и пеногасителем. Указанный раствор заливают в систему охлаждения, пускают двигатель и прогревают раствор до + 60 0 С. Через 10-15 мин раствор сливают, а систему промывают горячей водой, предварительно сняв термостат. Для нейтрализации остатков кислоты в промывочную воду добавляют нейтрализатор (соду, двухромокислый калий).

7.3. Система питания.

От технического состояния механизмов и узлов системы питания двигателя в значительной степени зависят основные показатели его работы — мощность и экономичность, а следовательно, и динамические качества автомобиля.

Диагностические и регулировочные работы по системе питания направлены на своевременное выявление и устранение неисправностей механизмов и узлов, обеспечивающих надёжный пуск двигателя и его работу с заданными мощностными и экономическими показателями.

Диагностика систем питания карбюраторных двигателей проводится методами ходовых и стендовых испытаний и поэлементной оценки технического состояния механизмов и узлов систем.

При ходовых испытаниях определяется расход топлива автомобилем при пробеге на определённом маршруте или при движении автомобиля с постоянной скоростью на коротком мерном участке (1 км).

В автотранспортных предприятиях наиболее широко применяется метод проверки расхода топлива на маршруте, так как он не требует сложной организации и специального оборудования.

Характер маршрута должен соответствовать условиям эксплуатации данного автомобиля (например, маршрут по городским улицам для автомобиля-такси, маршрут по загородным дорогам для междугородных автобусов). Средняя протяжённость маршрута — 5-10 км. Обычно выбирают маятниковый маршрут, т.е. такой, на котором автомобиль движется до конечного пункта и возвращается в гараж по одной и той же дороге. При этом поддерживают одинаковую техническую скорость. Количество израсходованного топлива измеряют с помощью мерного бачка, соединённого шлангом с входным штуцером топливного насоса. Длину пройденного пути фиксируют по спидометру.

Для проверки расхода топлива на коротком мерном участке выбирают ровный участок дороги протяжённостью 1 км с малым движением. Автомобиль на подходе к участку разгоняют до скорости 40-60 км/ч и поддерживают эту скорость на всём протяжении участка. Как и при испытаниях на маршруте, измерение количества израсходованного топлива проводят с помощью мерного бачка.

В обоих случаях для обеспечения необходимой точности измерений заезды повторяют 2-3 раза, а расход топлива подсчитывают по формуле

где Qср среднее из всех заездов количество топлива, израсходованное на

маршруте или мерном участке, л;

L длина маршрута или мерного участка, км.

Метод ходовых испытаний имеет ряд недостатков. К их числу относится значительная трудоёмкость работы, трудность обеспечения одинаковых дорожных и климатических условий (а следовательно, и трудность сопоставления полученных результатов). Кроме того, при ходовых испытаниях не представляется возможным точно учесть нагрузку двигателя.

Поэтому системы питания автомобиля целесообразно диагностировать на стенде с беговыми барабанами.

При диагностике на стенде определяют расход топлива двигателем (л/100 км) при заданной нагрузке и проводят проверку качества рабочего процесса по анализу состава отработавших газов двигателя, который у карбюраторных двигателей осуществляют с помощью газоанализаторов. Принцип работы газоанализатора НИИАТ заключается в том, что отработавшие газы двигателя проходят через специальную измерительную камеру прибора. В камере происходит дожигание имеющегося в газах углекислого газа СО. При этом изменяются температура платиновой нити, помещённой в камере, и её электрическое сопротивление. Нить нагревается, и электрическое сопротивление изменяется тем больше, чем больше в продуктах сгорания содержится СО. Изменение электрического сопротивления определяется с помощью мостовой схемы.

Анализ отработавших газов проводится на двух режимах работы двигателя: при 600 и при 2 000 об/мин коленчатого вала. Первый режим позволяет оценить исправность системы холостого хода карбюратора, второй — исправность главной дозирующей системы карбюратора, насоса-ускорителя и экономайзера. Исправной работе соответствует содержание СО в отработавших газах не более 2%. Если в них содержится от 2 до 10% СО, то карбюратор неисправен.

Следует, однако, отметить, что состав отработавших газов карбюра-торного двигателя зависит не только от качества горючей смеси, но и от работоспособности системы зажигания, а поэтому для окончательного суждения об исправности системы питания необходима проверка работы системы зажигания.

Кроме определения технического состояния системы питания по составу отработавших газов, можно судить так же об их токсичности и, следова-тельно, о возможности допуска автомобиля к дальнейшей эксплуатации.

Поэлементная диагностика системы питания карбюраторного двигателя заключается в определении неисправностей механизмов и узлов системы питания на основании диагностических признаков (сигналов), характеризую-щих изменение параметров их технического состояния.

Из структурной схемы диагностики системы питания (рис. 8) мы узнаем, во-первых, от каких механизмов и узлов зависят неисправности системы питания и, во-вторых, что служит общими признаками данного технического состояния системы в целом.

Из этой же схемы следует, что основными видами работ при поэлементной диагностике системы питания карбюраторного двигателя являются: проверка герметичности топливопроводов и состояния топливных и воздушных фильтров; проверка топливного насоса; карбюратора; ограничителя максимальных оборотов.

Герметичность топливопроводов проверяют по плотности соединений и по отсутствию течи. Состояние топливных и воздушных фильтров оценивается визуально по степени загрязнения фильтрующих элементов и масла (в воздушных фильтрах), а так же по отсутствию механических повреждений фильтрующих элементов.

Работоспособность топливного насоса определяется величиной и ско-ростью падения давления топлива после насоса, разрежением перед насосом и его производительностью. Для современных отечественных двигателей давление топлива после насоса должно быть в пределах 0,15-0,30 кГ/см 2 , а производительность — от 0,7 до 2,0 л/мин. Допускается падение давления после насоса до 0,08-0,10 кГ/см 2 за 30 сек. Для проверки используют специальные приборы (ГАРО) с ручным или электрическим приводом.

Так как давление, создаваемое насосом, часто зависит от упругости пружины диафрагмы, то её необходимо проверять (на специальном приборе) по длине в свободном состоянии и под определённой нагрузкой.

При поэлементной диагностике карбюраторов контролируют уровень топлива в поплавковой камере, пропускную способность дозирующих элементов (жиклёров, распылителей), герметичность клапана экономайзера.

У большинства отечественных карбюраторов уровень топлива располагается ниже плоскости разъёма карбюратора на 15-19 мм.

Уровень можно проверять без разборки карбюратора и снятия его с двигателя. Для этого применяют приспособление в виде стеклянной трубки, соединённой резиновым шлангом с металлическим штуцером, который ввёртывается вместо пробки под одним из жиклёров.

Приспособление действует по принципу сообщающихся сосудов. Расстояние от плоскости разъёма поплавковой камеры до уровня топлива в стеклянной трубке укажет на высоту уровня топлива в поплавковой камере. При замере этим приспособлением необходимо подкачивать топливо рычагом ручной подкачки насоса.

Проверка уровня топлива в поплавковой камере на снятом с двигателя карбюраторе производится на приборе ГАРО (модель 577). Этот прибор позволяет с помощью топливного насоса создать рабочее давление в поплавковой камере и одновременно с проверкой уровня топлива проконтролировать герметичность соединений карбюратора. Некоторые карбюраторы (К-82М, К-84М, К-88) имеют для проверки уровня топлива контрольное отверстие в стенке поплавковой камеры.

Пропускная способность жиклёров в соответствии с ГОСТ 2093-43 определяется количеством воды в кубических сантиметрах, протекающей через дозирующее отверстие жиклёра за 1 мин под напором водяного столба высотой 1 м ± 2 мм при температуре воды 20 ± 1 0 С.

Измерение пропускной способности жиклёров проводится на приборах с абсолютным или относительным замером. В приборе с абсолютным замером с помощью мерной мензурки измеряют всё количество воды, прошедшее за определённое время через жиклёр при напоре в 1 м. В приборе с относительным замером общее количество воды, вытекающей за определённое время из бачка прибора, ограничивается пропускной способностью калиброванного отверстия. Из этого количества только часть воды успевает пройти через жиклёр, а остальная вода попадает в мерную трубку. В трубке устанавливается постоянный уровень воды. Этот уровень тем ниже, чем больше пропускная способность жиклёра. Шкала мерной трубки путём испытания эталонных жиклёров протарирована так, что непосредственно показывает количество воды (см 3 ), прошедшее через жиклёр за 1 мин.

В первом случае время истечения определяется по секундомеру или песочным часам, а затем расход воды находят по формуле

где g пропускная способность жиклёра (расход воды), см 3 /мин;

Q расход воды за время истечения, см 3 ;

t время истечения воды, сек.

Герметичность клапана экономайзера с вакуумным приводом (карбюраторы К-75, К-21, К-88) и сопротивление давлению его открытия проверяются на приспособлении НИИАТ. Приспособление позволяет создать разрежение над диафрагмой клапана 200 мм рт. ст. При таком разрежении клапан должен быть плотно закрыт и не пропускать бензин. Затем разрежение над диафрагмой постепенно уменьшают и момент открытия клапана экономайзера отмечают по появлению течи бензина из-под клапана. Клапан должен открываться при разрежении над диафрагмой 100-120 мм рт. ст. Для проверки закрытия клапана экономайзера разрежение над диафрагмой постепенно увеличивают до прекращения течи из-под клапана. Разница в давлениях открытия и закрытия клапана не должна превышать 25 мм рт. ст.

Ограничители максимальных оборотов двигателя могут быть пневматическими или центробежно-вакуумными (ЗИЛ-130). Пневматические ограничители проверяют на приборе НИИАТ по величине натяжения пружины под действием эталонного груза. В центробежно-вакуумных ограничителях контролируют момент включения центробежного датчика и герметичность его клапана. Момент включения центробежного датчика проверяют с помощью специального прибора. Прибор позволяет создать в датчике необходимое разрежение, измерить его с помощью пьезометра, а также обеспечивает вращение ротора датчика. Порядок регулировки следующий: датчик устанавливают на прибор и его ротор приводится во вращение со скоростью 1000 об/мин. С помощью насоса прибора в роторе создаётся разрежение, равное 250 мм вод. ст. Затем число оборотов плавно увеличивают. Начало увеличения разрежения (по пьезометру) должно наблюдаться при 1500-1550 об/мин ротора. Необходимая регулировка осуществляется с помощью винта пружины клапана.

Карбюратор в целом может быть проверен на безмоторной установке. Установка позволяет воспроизвести условия работы карбюратора на двигателе и имитировать все установившиеся режимы работы двигателя от холостого хода до максимальной мощности.

При проверке на безмоторной установке определяют количество топлива, расходуемое карбюратором в зависимости от количества воздуха, поступающего в него через воздушный патрубок и соответствующего определённым режимам работы карбюратора на автомобиле. Расходы воздуха, соответствующие каждому из режимов работы, определяют заранее испытаниями на эталонных карбюраторах в определённых условиях. Например, первый режим (и соответствующий ему расход воздуха) подобран для случая движения автомобиля с небольшой установившейся скоростью по горизонтальной дороге, последний — работа карбюратора на полном открытии дросселя, остальные режимы — промежуточные.

Сравнивая расходы топлива с контрольными значениями, можно определить состояние и исправность карбюратора. Так, при повышенной пропускной способности жиклёров, обеспечивающих основную подачу топлива, расход топлива на всех режимах оказывается выше контрольных значений. Негерметичность клапана экономайзера приводит к повышению расхода топлива на режиме малой нагрузки, в то время как на остальных режимах расход остаётся в пределах норм.

Испытание карбюратора на безмоторной установке даёт достаточно полную картину его работы на всех режимах и позволяет обнаружить имеющиеся неисправности.

Регулировочные работы и работы по обслуживанию карбюраторного двигателя заключаются в устранении выявленных при проверке неисправностей. Наиболее характерными для карбюраторного двигателя являются устранение негерметичности в топливопроводах и агрегатах, промывка и очистка топливных и воздушных фильтров.

У карбюраторного двигателя регулируют уровень топлива в поплавковой камере. Для этого изменяют число прокладок под гнездом игольчатого клапана или изгибают рычажок поплавка, упирающийся в иглу. Жиклёры, не соответствующие по пропускной способности нормам, заменяют. Регулировку карбюратора проводят на минимальные обороты холостого хода на прогретом двигателе. До её начала необходимо проверить работу системы зажигания, приводов дросселя, а также убедиться в отсутствии подсосов воздуха во впускном трубопроводе. Минимальных оборотов двигателя добиваются путём поочерёдного вывёртывания и завёртывания винта качества смеси и упорного винта дросселя, подбирая наиболее выгодное их положение, соответствующее наименьшим устойчивым оборотам. При правильной регулировке карбюраторный двигатель должен устойчиво работать при 400-600 об/мин коленчатого вала.

При необходимости регулируют момент открытия клапана экономайзера или ход насоса-ускорителя, датчик ограничителя максимальных оборотов.

Требования безопасности при ТО и ремонте автомобиля

на автотранспортном предприятии:

При ТО и ремонте автомобилей необходимо принимать меры против их самостоятельного перемещения. Запрещаются ТО и ремонт автомобиля с работающим двигателем, за исключением случаев его регулирования.

Подъёмно-транспортное оборудование должно быть в исправном состоянии и использоваться только по своему прямому назначению. К работе с этим оборудованием допускаются лица, прошедшие соответствующий инструктаж.

Во время работы не следует оставлять инструменты на краю осмотровой канавы, на подножках, капоте или крыльях автомобиля. При сборочных работах запрещается проверять совпадение отверстий в соединениях деталей пальцами; для этого необходимо пользоваться специальными ломиками или бородками.

Во время разборки и сборки узлов и агрегатов следует применять специальные съёмники и ключи. Трудно снимаемые гайки сначала нужно смочить керосином, а затем отвернуть ключом. Отвёртывать гайки зубилом и молотком не разрешается.

Запрещается загромождать проходы между рабочими местами деталями и узлами, а также скапливать большое количество на местах разборки.

Повышенную опасность представляют операции снятия и установки пружин, поскольку в них накоплена значительная энергия.

Эти операции необходимо выполнять на стендах или с помощью приспособлений обеспечивающих безопасную работу.

Гидравлические и пневматические устройства должны быть снабжены предохранительными и перепускными клапанами.

Рабочий инструмент следует содержать в исправном состоянии.

Требования к производственной санитарии и гигиены.

Помещения, в которых рабочие, выполняя ТО и ремонт автом о биля, должны быть оборудованы осмотровыми канавами и эстак а дами с направляющими предохранительными ребордами или под ъ емниками.

Приточно-вытяжная вентиляция должна обеспечивать удаление выделяемых паров и газов, а также приток свежего воздуха. Ест е ственное и искусственное освещение рабочих мест должно быть достаточным для безопасного выполнения работ.

На территории предприятия необходимо наличие санитарно-бытовых помещений: гардеробных, душевых, умывальных.

Меры пожарной безопасности на автотранспортных

Основными причинами возникновения пожаров на автотран с портных предприятиях является следующее:

Неисправность отопительных приборов;

Неправильная их эксплуатация;

Самовозгорание горюче смазочных и обтирочных материалов при их неправильном хранении;

Неосторожное обращение с огнём.

Во всех производственных помещениях необходимо выполнять сле дующие противопожарные требования:

Курить только в специально отведённых для эт о го местах;

Не пользоваться открытым огнём;

Хранить топливо и керосин в количествах, не пр е вышающих сменную потребность;

Не хранить порожнюю тару из-под топлива и см а зочных материалов;

Проводить тщательную уборку в конце каждой см е ны;

Разлитое масло и топливо убирать с помощью песка;

Собирать использованные обтирочные матери а лы, складывать их в металлические ящики с крышками и по окончании смены выносить в сп е циально отв е дённые для этого места.

Любой пожар, своевременно замеченный и не получивший зна чительное распространение, может быть быстро ликвидирован.

Успех ликвидации пожара зависит от быстроты оповещения о его начале и введения в действие эффективных средств пожарот у шения.

Для оповещения о пожаре служат телефон или пожарная сигн а лиз а ция. В случае возникновения пожара необходимо немедленно сообщить об этом в 01 . Пожарная сигнализация бывает двух в и дов: электрическая и автоматическая. Приёмную станцию эле к трической сигн а лизации устанавливают в помещении пожарной охраны, а извещатели — в производственных помещениях и на те р ритории предприятий. Си г нал о пожаре подаётся нажиманием кнопки извещателя. В автоматической пожарной сигнализации и с пользуется термостаты, которые при повышении температуры до назначенного предела включают извещ а тели.

Эффективным и наиболее распространённым средством тушения п о жаров является вода, однако, в некоторых случаях, использовать её нельзя. Не поддаётся тушению водой легковоспламеняющиеся жидк о сти, которые легче воды. Например, бензин, керосин, всплывая на поверхность воды, продолжают гореть. При нево з можности тушить в о дой горящую поверхность засыпают песком, накрывают специальными асбестовыми одеялами. В особо опасных в пожарном отношении производствах могут использоваться ст а ционарные автоматические уст а новки различной конструкции, срабатывающие при заданной темпер а туре и подающие воду, пену или специальные составы.

Меры электробезопасности при ТО и ремонте автомобилей.

Опасность поражения током возникает при использовании неис пра в ных ручных электрифицированных инструментов, при работе с неисправными рубильниками и рубильниками, при соприкосн о вении с проводами, а также случайно оказавшимися под напряж е нием металлическими конструкциями. Электрифицированный и н струмент (дрели, гайковёрты, шлифовальные машины и др.) вкл ю чают в сеть с напряжен и ем 220В.

Разрешается работать только инструментами, имеющими защи т ное заземление.

Штепсельное соединение для включения инструмента должны иметь заземляющий контакт, который длиннее рабочих контактов и отлич а ется от них по форме.

При включении инструмента в сеть заземляющий контакт входит в соединение со штепсельной розеткой первым, а при выключении в ы ходит последним.

При переходе с электрифицированным инструментом с одного места работы на другое нельзя натягивать провод. Не следует пр о тягивать провод через проходы, проезды и места складирования деталей. Нельзя держать электрифицированный инструмент, взя в шись одной рукой за провод. Работать с электрифицированным инструментом при рабочем напряжении превышающим 42В, мо ж но только в резиновых перчатках и калошах, либо стоя на изол и рованной поверхности (резин о вом коврике, сухом деревянном ящике).

Во избежание поражения током необходимо пользоваться пер е носными электролампами с предохранительными сетками. В п о мещении без повышенной опасности (сухом, с не токопроводящ и ми полами) можно использовать переносные лампы напряжением до 42В, а в особо опасных помещениях (сырых, с токопроводящ и ми полами или ток о проводящей пылью) напряжение не должно превышать 12В.

1. Говорущенко Н.Я. Диагностика технического состояния автомобилей.

М., «Транспорт», 1970.

2. Крамаренко Г.В. Техническая эксплуатация автомобилей.

М., Автотрансиздат, 1962.

3. Мишин И.А. Долговечность двигателей. М., «Машиностроение», 1968.

Источник

Читайте также:  Двигатель м51 дизель технические характеристики
Adblock
detector