Гидравлический двигатель на высоком давлении

 

Устройство и принцип работы гидромотора

Принцип действия гидравлического мотора прост и соответствует требованиям надежности к этому механизму. При работе гидромотора происходит преобразование энергии жидкости (подача рабочей жидкости под давлением) в механическую энергию (съем с вала крутящего момента). Сам процесс описывается, как периодическое заполнение рабочей камеры жидкостью при дальнейшем её вытеснении. Слив происходит с потерей давления, что позволяет получить полезный перепад давления, который и трансформируется в механическую энергию.

Преимущество, которым обладают гидромоторы обусловлено широким диапазоном регулирования частоты вращения. Так при использовании гидрораспределителя или других средств, регулирующих движение вала, можно добиться показателей 30-40 об/мин, а гидромоторы специального исполнения позволяют задать параметры 1-4 об/мин.

Дополнительным плюсом гидромоторов является их ремонтопригодность. Ремонт гидромоторов всех типов оказывает достаточное число специализированных ремонтных организаций.

Как устроен гидравлический мотор

Устройство гидромотора выглядит следующим образом. Рабочая жидкость перемещается в подковообразный канал корпуса через отверстия, а затем транспортируется на пластины ротора. Последний поворачивается против часовой стрелки синхронно с валом. Для слива рабочей среды предусмотрены окна в заднем диске и отверстие в крышке.

Вал гидравлического мотора движется в шарикоподшипниках, а ротор установлен на шлицы. В пазах ротора движутся пластины, они находятся в прижатом состоянии к внутренней поверхности статора. Изначально прижимная система состоит из пружин, напоминающих форму коромысла. Одна пружина создает давление на целую пару пластин, установленных перпендикулярно друг другу. Поэтому одна пластина выходит ровно настолько, насколько другая поступает в паз ротора. Это позволяет избежать повреждения пружины при эксплуатации гидромотора.

Вращение ротора происходит между двумя распределительными дисками из стали, расположенными со стороны корпуса и крышки.

Кольцевые диски имеют одинаковый диаметр и с помощью отверстия крышки входят в задний диск. За ним есть полость, которая через отверстия и пазы сообщается с напорной магистралью. Пазы установлены напротив окон, соединенных с каналом корпуса, откуда выходит отверстие. Оно сообщается с напорной магистралью.

Давление в полости создается за счет автоматического прижима заднего диска, осуществляемого тремя пружинами. Под давлением рабочей среды, перемещающейся из отверстия, золотник движется в пробку. Давление передается из одной полости в другую через отверстия и создает энергию, необходимую для прижимания пластины к статору.

В моторе предусмотрены отверстия для смены направления вращения вала. Через них проходит рабочая жидкость и поступает в другое отверстие, сообщающееся со сливной магистралью. Под давлением рабочей среды золотник уходит в пробку до упора, после чего давление жидкости передается полости за задним диском и под пластинами.

Для герметичности вала используется манжета из маслостойкой резины, а протечки сливаются через специальное отверстие. Течи между корпусом и крышкой предупреждает резиновое кольцо или сальник.

По конструктивным особенностям гидромоторы подразделяются на следующие типы:

  • Шестеренные;
  • Пластинчатые;
  • Радиально-поршневые;
  • Аксиально-поршневые;

Принцип действия шестеренных гидромоторов

Шестеренные гидромоторы работают по принципу подачи давления жидкости на шестерни с неуравновешенными зубьями, что придает им вращение. Преимущество данного типа гидравлического мотора заключается в простоте конструкции и возможности достижения частоты вращения до 10000 об/мин (специальное исполнение). Обычная частота вращения достигает 5000 об/мин при установленном давлении рабочей жидкости — 200 bar. К недостаткам шестеренного гидромотора относится низкий коэффициент полезного действия, который не превышает значения 0,9.

Пластинчатые гидромоторы

В пластинчатых гидромоторах рабочие камеры образуются вытеснителями, пластинами расположенными на роторе. Для герметичности камер применяются пружины под пластинами, обеспечивая их постоянное прижимное усилие к стенкам статора. Ось ротора смещена относительно оси статора и при подаче рабочей жидкости объем камеры всасывания увеличивается, а объем камеры, из которой происходит нагнетание, уменьшается. К недостаткам механизмов подобного типа относят низкую ремонтопригодность и невозможность эксплуатации агрегата при низких температурах (залипание пластин).

Радиально-поршневые гидромоторы

Радиально-поршневые гидромоторы применяются при относительно высоком давлении рабочей жидкости (от 10 мПа). Камерами в гидромоторе являются цилиндры, расположенные радиально, соответственно роль вытеснителей играют поршни. Под воздействием высокого давления рабочие камеры приводят в движение вал мотора. Механизм распределения на валу поочередно соединяет камеры с линиями давления и слива рабочей жидкости.

Аксиально-поршневые гидромоторы

Аксиально-поршневые гидромоторы работают по уже известному принципу — рабочие камеры, это цилиндры, аксиально расположенные относительно оси ротора, а вытеснители — поршни. Цилиндры располагаются вокруг оси вращения или под небольшим углом к ней. Во время вращения вала вращаются и блоки цилиндров. При выдвижении поршней из цилиндров происходит всасывание жидкости, а при обратном движении поршней осуществляется нагнетание.

Основные неисправности гидромоторов

Практически все виды неисправностей в гидромоторах относятся к механическим повреждениям и износу деталей участвующих в передаче крутящего момента. Образование задиров, повышенный износ, разрушение уплотнений — все это ведет к замедленной работе механизма и потери мощности агрегата. Обнаружение неисправности и ремонт гидродвигателей осуществляется в специализированных мастерских, обладающих необходимым инструментарием и диагностическим оборудованием.

Горячая линия (ремонт, комплектующие): +7 (495) 660-04-23

РЕМОНТ И ОБСЛУЖИВАНИЕ
ЛЮБОЙ ГИДРАВЛИКИ

Источник

Гидромоторы: какие бывают и где используются?

Гидравлический мотор – это агрегат, предназначенный для преобразования энергии потока жидкости в механическую энергию, которая приводит в движение рабочий элемент машины. В качестве исполнительного органа используется выходной вал, на который и подается преобразованная энергия.

Принцип работы

При запуске двигателя в паз распределительной системы поступает жидкость, а затем перемещается в камеры блока цилиндров. При наполнении отсека повышается давление на поршни, что приводит к созданию крутящего момента. Принцип преобразования гидравлической энергии в механическую определяется типом мотора. В заключительной стадии рабочая среда вытесняется из цилиндров, а поршни приступают к обратному действию.

Виды и область применения гидромоторов

  1. Аксиально-поршневой

Конструкция предполагает параллельное расположение цилиндров либо расположение цилиндров вокруг или под уклоном к оси вращения блока поршневой группы. В данном типе гидромотора имеется функция реверсного хода, поэтому для работы гидроагрегата требуется соединение отдельной дренажной линии.

Читайте также:  Почему турбированные двигатели едят масло

К достоинствам аксиально-поршневого гидропривода относятся:

  • Работают с крутящим моментом до 600 Нм;
  • Нормальное давление – 400-450 бар;
  • Рабочий объем регулируется или остается постоянным.

Такие насосы используются на технике и в механизмах с большими нагрузками – сельскохозяйственных машинах, гидравлических прессах, экскаваторах, карьерной технике, мобильных механизмах и других установках.

В моторах данного типа предусмотрена линия отвода рабочей среды из зоны подшипников. Она предназначена для реверсивного потока. При поступлении в гидродвигатель жидкость оказывает действие на шестерни, что приводит к формированию крутящего момента на валу привода.

Шестеренные гидромоторы демонстрируют стабильную работу на частоте вращения до 5000-10000 об/мин и давлении до 200 бар, а также не предъявляют особых требований к содержанию примесей. Поэтому гидроагрегат нашел широкое применение в приводах навесного оборудования спецтехники (экскаваторов, самосвалов, сеялок, погрузчиков и др.), станках и вспомогательных механизмах. В связи с низким КПД, не превышающим 0,9, гидроаппарат не подходит для решения задач силового обеспечения.

Представляют собой разновидность шестеренных гидромоторов с внутренним зацеплением. В устройстве гидроагрегата предусмотрен специальный распределитель, посредством которого подается рабочая жидкость. В рабочих полостях образуется крутящий момент, который вызывает вращение ротора. В результате последний совершает планетарное движение.

Достоинствами героторных гидромоторов являются:

  • Крутящий момент достигает 2000 Нм;
  • Стабильная работа при давлении до 25 МПа;
  • Рабочий объем гидроагрегата – до 800 см3;
  • Малошумная работа;
  • Небольшие габариты гидроузла.

Гидрооборудование героторного типа применяется в лесной, сельхозтехнике, дорожноуборочных машинах и других механизмах, где необходим высокий крутящий момент при сравнительно небольшой мощности.

  1. Радиально-поршневые

Эти моторы бывают двух типов:

Однократного действия. Рабочие камеры, подвергающиеся высокому давлению, оказывают действие на кулак привода. Это приводит к старту вращения вала. На нем присутствует распределительный механизм, посредством которого камеры сопрягаются со сливными линиями и линиями высокого давления. В некоторых конструкциях рабочая среда перемещается в рабочие отсеки с помощью вала. Гидромоторы однократного действия выдерживают давление до 35 МПа и работают с частотой вращения до 2 тысячи об/мин. Данный тип гидроагрегатов подходит для поворотных устройств и транспортировки малотекучих жидкостей.

Многократного действия. Отличается от предыдущего типа тем, что вытеснитель осуществляет несколько рабочих циклов в течение одного оборота вала. Число этих циклов зависит от профиля корпуса. Чаще всего встречаются в рабочих органах мобильных машин (механизмов) в качестве мотор-колеса, поэтому в устройстве может быть предусмотрена функция свободного вращения. Задача этого режима состоит в нагнетании малого давления (не более 5 бар) в линию дренажа и сопряжения рабочих камер со сливной линией. Свободное вращение обеспечивается за счет втягивания плунжеров в цилиндры и отхода от рабочего профиля.

Для консультации по выбору гидравлики для вашего вида техники обращайтесь к специалистам компании «СДМ-гидравлика».

Источник

Гидродвигатели. Типы. Характеристики преимущества и недостатки различных конструкций.

3. Гидродвигатели. Типы. Характеристики преимущества и недостатки различных конструкций.

1. Шестеренные гидромоторы

Шестеренные гидромоторы конструктивно схожи с шестеренными насосами (см. статья 2), отличие состоит в наличии линии отвода рабочей жидкости из зоны подшипников. Это необходимо для обеспечения реверсивности гидромотора. При подаче в гидромотор, рабочая жидкость воздействует на шестерни, создавая при этом крутящий момент на валу.
Шестеренные гидромоторы часто применяются в гидроприводах навесного оборудования мобильной техники, в качестве привода вспомогательных механизмов различных машин, в станочных гидроприводах. Столь широкое распространение они получили благодаря простоте конструкции и сравнительно низкой стоимости.
Шестеренные гидромоторы применяются на частотах вращения до 5000об/мин и давлениях до 200 bar (в специальном исполнении до 10000 об/мин и до 300 bar). Коэффициент полезного действия (КПД), как правило, не превышает 0,9.
Конструкция шестеренного гидромотора показана на рис. 1
Конструктивный вид шестеренного гидромотора и насоса аналогичны, ознакомиться с ним можно в статье 2.
Крутящий момент создаваемый гидромотором определяется как:


где:
∆p – перепад давлений на гидромоторе,
b – ширина шестерен,
m – модуль зацепления,
z – количество зубьев шестерни


Достоинства и недостатки шестеренных гидромоторов:

  • • Простота конструкции.
  • • Частоты вращения до 10000 об/мин
  • • Низкая стоимость

2. Героторные гидромоторы

Одной из разновидностей шестеренных гидромашин являются героторные гидромоторы. Благодаря своей особенности, получения высоких крутящих моментов при небольших габаритных размерах, эти гидромоторы довольно часто применяются в приводах тихоходных и вместе с тем сильно нагруженных механизмов. Рабочая жидкость подается в рабочие полости гидромотора через специальный распределитель. В рабочих полостях создается крутящий момент, приводящий во вращение зубчатый ротор, который начинает совершать планетарное движение, обкатываясь по роликам. Героторные гидромо­торы отличаются высокой энергоемкостью, возможностью работы при давлениях до 25 МПа. Рабочий объем таких машин достигает 800 см3, а развиваемый момент — до 2000 Н∙м.

Существует две конструктивных разновидности героторных гидромоторов: Героторные и героллерные.

Крутящий момент, создаваемый гидромотором определяется по специальным диаграммам, имеющимся в документации на гидроагрегат.

Устройство героторного гидромотора схематично представлено на рис.2.

Внешний вид героторного гидромотора представлен на рис. 3.

Устройство героллерного гидромотора схематично представлено на рис.4.

Внешний вид героллерного гидромотора представлен на рис. 5.

Достоинства и недостатки героторных гидромоторов:

  • • Простота конструкции.
  • • Большие крутящие моменты
  • • Малые габариты
  • • Малые частоты вращения
  • • Невысокие давления до 21МПа

3. Пластинчатые гидромоторы.

Пластинчатые гидромоторы по конструкции аналогичны насосам, при этом в отличие от насосов они всегда снабжены механизмом прижима рабочих пластин. Гидромоторы данного типа, как и насосы, могут быть однократного и двукратного действия. Моторы однократного действия – как правило, реверсивные и могут быть регулируемыми, а моторы двукратного действия всегда нерегулируемые и преимущественно нереверсивные. Ввиду ряда конструктивных особенностей моторы данной конструкции широкого распространения не получили.

Гидромоторы данного типа работают на давлениях до 20МПа и частотах вращения до 1500 об/мин. КПД может достигать 0,8.

Крутящий момент создаваемый пластинчатым гидромотором определяется как:

∆p – перепад давлений на гидромоторе,

Читайте также:  Лучшие масло двигателя хонд

q – рабочий объем гидромотора,

Конструкция пластинчатого гидромотора однократного действия схематично показана на рис. 6, конструкция гидромотора двухкратного действия — на рис. 7.

Конструктивный вид пластинчатого гидромотора и насоса аналогичны, ознакомиться с ним можно в статье 2.

Достоинства и недостатки пластинчатых гидромоторов:

  • • Низкий уровень шума
  • • Низкая по сравнению поршневыми моторами стоимость.
  • • Менее требователен к чистоте рабочей жидкости.
  • • Большие нагрузки на подшипники ротора.
  • • Сложность уплотнения торцов пластин
  • • Низкая ремонтопригодность
  • • Невысокий КПД

4. Радиально-поршневые гидромоторы

Радиально поршневые гидромоторы идентичны по конструкции насосам данной компоновочной схемы. Наиболее часто эти гидромоторы применяются в механизмах для получения высоких моментов. Радиально-поршневые гидромоторы можно условно разделить на две группы:

  • • Гидромоторы однократного действия
  • • Гидромоторы многократного действия

Гидромоторы однократного действия

Моторы однократного действия применяются, например, как привода шнеков для перекачки малотекучих жидкостей и взвесей (бетон, глинистые смеси) или поворотных механизмах, где требуется большие крутящие моменты. Развиваемые моменты достигают 32000 Нм при давлениях до 35МПа, частоты вращения вала до 2000 об/мин. Рабочие объемы моторов достигают 8500 см3/об.

На рисунке 8 изображен конструктивный вид радиально-поршневого гидромотора однократного действия с неподвижным корпусом.


Принцип действия гидромотора, изображенного на рис. 8 следующий: Рабочие камеры под действием высокого давления воздействуют на кулачек приводя во вращение вал мотора. На валу имеется механизм распределения (на схеме не показан), который соединяет рабочие камеры в определенном порядке с линиями высокого давления и слива. На рис. 8 жидкость от распределителя к рабочим камерам подводится по каналам в корпусе. Наряду с этой существует конструкция мотора с подводом жидкости к рабочим камерам через вал.

Крутящий момент создаваемый радиально-поршневым гидромотором определяется как:

∆p – перепад давлений на гидромоторе,

q – рабочий объем гидромотора,

Гидромоторы многократного действия

Моторы многократного действия часто применяются в приводах конвейеров, в гидропередачах маршевого хода мобильных машин, а также в других нагруженных механизмах. Развиваемый моторами данного типа момент может достигать 45000 Нм при давлении до 45 МПа, частоты вращения вала до 300 об/мин. Рабочие объемы моторов достигают 8000 см3/об.

На рисунке 9 изображен конструктивный вид радиально-поршневого гидромотора многократного действия с неподвижным корпусом

Основным отличием от моторов однократного действия состоит в том, что за один оборот вала вытеснитель (плунжер) каждой рабочей камеры совершает несколько рабочих циклов. Количество циклов определяется рабочим профилем корпуса. Соединение рабочих камер с линиями высокого давления и слива происходит с помощью системы распределения (на схеме не показана).

В моторах многократного действия конструктивно может быть реализована система ступенчатого управления рабочим объемом. Она реализуется подключением или отключением рабочих камер с помощью специального распределителя, при этом отключенные рабочие камеры соединяются со сливом.

Так как гидромоторы данного типа часто используются в приводах мобильных машин как мотор-колесо, в них может быть реализован режим свободного вращения. Он заключается в подаче в дренажную линию мотора небольшого давления 2…5 bar (в зависимости от конструкции) и соединении рабочих камер с линией слива. Плунжера гидромотора при этом втягиваются в цилиндры и отходят от рабочего профиля, обеспечивая свободное вращение.

Достоинства и недостатки радиально-поршневых гидромоторов:

  • • Высокие создаваемые моменты
  • • Принципиальная возможность регулировки рабочего объема
  • • Возможность реализации режима свободного вращения
  • • Сложность конструкции.
  • • Высокая пульсация расхода рабочей жидкости
  • • Высокая стоимость

5. Аксиально-поршневые гидромоторы с наклонным блоком

Аксиально-поршневые гидромоторы — это разновидность роторно-поршневых гидромашин с аксиальным расположением цилиндров (т.е. располагаются вокруг оси вращения блока цилиндров, параллельны или располагаются под небольшим углом к оси). Моторы и насосы данного типа имеют аналогичную конструкцию.

Аксиально-поршневые гидромоторы с наклонным блоком используются в приводах мобильных машин, станочных гидроприводах, прессах и способны работать на давлениях до 450 бар, развиваемый крутящий момент при этом достигает 6000 Нм. Частоты вращения достигают 5000 об/мин.

Гидромоторы данного типа как правило реверсивные, и в обязательном порядке требуют подключения дренажной линии.

На рис. 10 показана конструктивная схема аксиально-поршневого мотора с наклонным блоком. Из линии высокого давления рабочая жидкость поступает в рабочие камеры через серповидное окно распределителя. Под действием давления поршни выходят и цилиндров и создают крутящий момент. Из цилиндров, соединенных с серповидным окном на противоположной половине распределителя, поршни вытесняют рабочую жидкость в линию слива.

Конструктивно аксиально-поршневые гидромоторы могут иметь постоянный и регулируемый рабочий объем.

Крутящий момент аксиально-поршневого гидромотора определяется из зависимости:

∆p – перепад давлений на гидромоторе

z – число поршней

dп – диаметр поршня

Dц– диаметр расположения цилиндров

γ – угол наклона блока цилиндров

q – рабочий объем гидромотора,

Достоинства и недостатки аксиально-поршневых гидромоторов с наклонным блоком:

  • • Работа при высоких давлениях
  • • Принципиальная возможность регулировки рабочего объема
  • • Высокие частоты вращения
  • • Высокий КПД
  • • Сложность конструкции
  • • Высокая стоимость
  • • Высокие пульсации расхода

6. Аксиально-поршневые гидромоторы с наклонным диском

Аксиально-поршневые гидромоторы с наклонным диском конструктивно повторяют насосы данного типа.

Аксиально-поршневые гидромоторы с наклонным диском используются в приводах мобильных машин, станочных гидроприводах, прессах и способны работать на давлениях до 450 бар, развиваемый крутящий момент немного ниже, чем у моторов с наклонным блоком и ограничен значением в 3000Нм. Частоты вращения достигают 5000 об/мин.

Гидромоторы данного типа реверсивные, и в обязательном порядке требуют подключения дренажной линии.

На рис. 11 показана конструктивная схема аксиально-поршневого мотора с наклонным диском. Из линии высокого давления рабочая жидкость поступает в рабочие камеры через серповидное окно распределителя. Под действием давления поршни выходят и цилиндров и создают крутящий момент. Из цилиндров, соединенных с серповидным окном на противоположной половине распределителя, поршни вытесняют рабочую жидкость в линию слива.

Конструктивно гидромоторы данного типа могут иметь постоянный и регулируемый рабочий объем.


Крутящий момент аксиально-поршневого гидромотора определяется из зависимости:

или

Где:

∆p – перепад давлений на гидромоторе

z – число поршней

dп – диаметр поршня

Dц– диаметр расположения цилиндров

γ – угол наклона диска

Читайте также:  Как отрегулировать обороты двигателя на шевроле лачетти

q – рабочий объем гидромотора,

Достоинства и недостатки аксиально-поршневых гидромоторов с наклонным диском:

  • • Работа при высоких давлениях
  • • Принципиальная возможность регулировки рабочего объема
  • • Высокие частоты вращения
  • • Высокий КПД
  • • Сложность конструкции
  • • Высокая стоимость
  • • Высокие пульсации расхода

7. Многотактные аксиально-поршневые гидромоторы.

Многотактные аксиально-поршневые гидромоторы с неподвижным валом.

Данные гидромоторы являются разновидностью роторно-поршневых гидромашин. Рабочие камеры многотактных гидромашин совершают несколько рабочих циклов за один оборот вала гидромашины. Количество этих циклов определяется профильным диском. Многотактные аксиально-поршневые гидромоторы с неподвижным валом способны создавать крутящий момент до 4000 Нм при давлениях до 350 бар. Максимальная частота вращения не превышает 300 об/мин.

Отличительной особенностью моторов данного типа является высокая компактность, поэтому наиболее часто они находят применение в гидропередачах маршевого хода мобильных машин. Моторы при этом выполнены в виде мотор-колеса и устанавлены в ступице колеса.

Конструктивная схема многотактного аксиально-поршневого гидромотора с неподвижным валом представлена на рис. 12.

Из линии высокого давления рабочая жидкость через систему распределения, расположенную в неподвижном валу, поступает в рабочую камеру. Под воздействием давления рабочей жидкость плунжера выходят из рабочего цилиндра и огибая профиль диска создают крутящий момент.

Как и в радиально-поршневых гидромоторах многократного действия в аксиально-поршневых гидромоторах многократного действия может быть реализован режим свободного вращения. Он заключается в подаче в дренажную линию мотора небольшого давления 2…5 bar (в зависимости от конструкции) и соединении рабочих камер с линией слива. Плунжера гидромотора при этом втягиваются в цилиндры и отходят от рабочего профиля, обеспечивая свободное вращение.

Многотактные аксиально-поршневые гидромоторы с неподвижным корпусом.

Рабочие камеры многотактных аксиально-поршневых гидромоторов с неподвижным корпусом совершают несколько рабочих циклов за один оборот вала гидромашины. Количество этих циклов определяется профильным диском. Многотактные аксиально-поршневые гидромоторы с неподвижным корпусом способны создавать крутящий момент до 5000 Нм при давлениях до 350 бар. Максимальная частота вращения достигает 500 об/мин.

Наиболее часто моторы этого типа применяются в приводах мобильных машин и конвейеров. Так как многотактные аксиально-поршневые гидромоторы с неподвижным корпусом довольно компактны, они могут применяться для создания высоких крутящих моментов в механизмах где установка радиально-поршневого гидромотора невозможна из-за больших габаритных размеров.

В гидромоторах может быть реализован режим свободного вращения, описанный выше.

Конструктивная схема многотактного аксиально-поршневого гидромотора с неподвижным корпусом представлена на рис. 13.

Рис. 13

Крутящий момент создаваемый аксиально-поршневыми гидромоторами с неподвижным валом и неподвижным корпусом определяется как:

∆p – перепад давлений на гидромоторе,

q – рабочий объем гидромотора,

Достоинства и недостатки аксиально-поршневых гидромоторов многократного действия:

  • • Работа на давлениях до 350 бар
  • • Высокий развиваемый момент
  • • Возможность реализации режима свободного вращения
  • • Высокий КПД
  • • Компактность
  • • Малые частоты вращения
  • • Сложность конструкции
  • • Высокая стоимость

8. Линейные гидродвигатели (гидроцилиндры).

Линейные гидродвигатели (гидроцилиндры) – тип объёмных гидродвигателей создающих только поступательные движения. Сфера применения гидроцилиндров в мобильной технике очень широка. Они применяются как основные двигатели исполнительных механизмов автокранов, экскаваторов, гидравлических манипуляторов, коммунальных машин, сельскохозяйственной техники, широко используются в станочном оборудовании.

Гидроцилиндры могут развивать большие толкающие и тянущие усилия. Значения усилий зависят только от рабочего давления и активных рабочих площадей.

∆p – перепад давлений в полостях гидроцилиндра,

S – активная площадь ,

По принципу действия гидроцилиндры разделяют на:

  • • цилиндры одностороннего действия
  • • цилиндры двухстороннего действия

Следует отметить что давления в полостях гидроцилиндров показаны условно для одного из усилий тянущего или толкающего.

Гидроцилиндры по конструктивному исполнению подразделяют на:

  • • плунжерные
  • • поршневые
  • • телескопические

Плунжерные гидроцилиндры

Конструктивная схема плунжерного гидроцилиндра изображена на рис. 14.

При подаче рабочей жидкости в рабочую полость плунжер начинает смещаться под действием высокого давления, создавая усилие F. В исходное состояние цилиндр возвращается под действием внешнего усилия приложенного к торцу штока.

Усилие на гидроцилиндре можно определить из зависимости

p – значение давления в полости гидроцилиндра,

S – активная площадь ,

Конструктивно плунжерный цилиндр может иметь пружинный возврат см. рис. 15

Поршневые гидроцилиндры

это самый распространённый тип гидроцилиндров. В отличии от плунжерных, поршневые гидроцилиндры могут создавать как толкающее так и тянущее усилие.

Конструктивная схема поршневого гидроцилиндра двустороннего действия изображена на рис. 16. (Давления в полостях гидроцилиндра показано для усилия F1)

Толкающее усилие определяется как

p – значение давления в поршневой полости гидроцилиндра,

– активная площадь ,

Тянущее усилие определяется как

p – значение давления в штоковой полости гидроцилиндра,

Из-за разницы площадей S1 и S2 скорости и усилия при движения штока в прямом и обратном направлениях неравны. Если выбрать диаметры DЦ и dШТ таким образом что активные площади будут соотносится как S1=2∙S2, то при подключении гидроцилиндра по схеме рис. 17 скорости движения будут в прямом и обратном направлениях будут одинаковы. Такие гидроцилиндры называют дифференциальными. Усилия создаваемые дифференциальным цилиндром на прямом и обратном ходе будут равны:

p – значение давления в полостях гидроцилиндра,

DЦ – диаметр цилиндра

dШТ – диаметр штока

Поршневые гидроцилиндры могут использоваться как плунжерные см. рис. 18. Штоковая полость гидроцилиндра сообщается с атмосферой через сапун, который предотвращает попадание частиц пыли и грязи на рабочую поверхность гидроцилиндра. Толкающее усилие создаваемое гидроцилиндром определяется также как и для поршневого гидроцилиндра.

Распространение в технике получили цилиндры с проходным штоком см. рис 19. Их главным преимуществом является равенство скоростей и усилий при прямом и обратном ходе штока.

Тянущее и толкающее усилие определяется как

p – значение давление в полости гидроцилиндра,

– активные площади ,

Для обеспечения различных соотношений скоростей и усилий при прямом и обратном ходе штоков гидроцилиндров применяют гидроцилиндры с проходными штоками разного диаметра. Данный тип относится к цилиндрам специального исполнения. Такой гидроцилиндр схематично изображен на рис. 20.

Усилия создаваемые гидроцилиндром специального назначения рассчитываются как:

p – значение давление в полости гидроцилиндра,

и – активные площади

Внимание! Данная статья авторская. При копировании ее с сайта обязательно указывать источник!

Источник

Adblock
detector