Газомоторный двигатель принцип работы

Газовый двигатель

О достоинствах газомоторного топлива, в частности метана, сказано немало, но напомним о них еще раз.

Это экологичный выхлоп, удовлетворяющий текущие и даже будущие законодательные требования к токсичности. В рамках культа глобального потепления это важное преимущество, поскольку нормы Euro 5, Euro 6 и все последующие будут насаждаться в обязательном порядке и проблему с выхлопом так или иначе придется решать. К 2020 г. в Евросоюзе новым транспортным средствам будет разрешено производить в среднем не более 95 г СО2 на километр. К 2025 г. этот допустимый предел могут еще опустить. Двигатели на метане способны удовлетворить эти нормы токсичности, и не только благодаря меньшему выбросу СО2. Показатели выбросов твердых частиц в газовых двигателях также ниже, чем у бензиновых или дизельных аналогов.

Далее, газомоторное топливо не смывает масло со стенок цилиндра, что замедляет их износ. Как утверждают пропагандисты газомоторного топлива, ресурс двигателя волшебным образом вырастает в разы. При этом они скромно умалчивают о теплонапряженности работающего на газе двигателя.

И главное преимущество газомоторного топлива – это цена. Цена и только цена покрывает все недостатки газа как моторного топлива. Если мы говорим о метане, то это неразвитая сеть АГНКС, которая буквально привязывает газовый автомобиль к заправке. Количество заправок сжиженным природным газом ничтожно, этот вид газомоторного топлива сегодня представляет собой нишевой, узкоспециальный продукт. Далее, газобаллонное оборудование занимает часть полезной грузоподъемности и полезного пространства, ГБО хлопотно и накладно в обслуживании.

Технический прогресс породил такой вид двигателя, как газодизель, живущий в двух мирах: дизельном и газовом. Но как универсальное средство газодизель не реализует в полном объеме возможности ни того, ни другого мира. Нельзя оптимизировать ни процесс сгорания, ни показатели КПД, ни образование выбросов для двух видов топлива на одном двигателе. Для оптимизации газовоздушного цикла нужно специализированное средство – газовый двигатель.

Сегодня все газовые двигатели используют внешнее образование газовоздушной смеси и воспламенение от свечи зажигания, как в карбюраторном бензиновом двигателе. Альтернативные варианты – в стадии разработки. Газовоздушная смесь образуется во впускном коллекторе путем инжекции газа. Чем ближе к цилиндру происходит этот процесс, тем быстрее реакция двигателя. В идеале газ должен впрыскиваться прямо в камеру сгорания, о чем речь пойдет ниже. Сложность управления не единственный недостаток внешнего смесеобразования.

Инжекция газа управляется электронным блоком, который также регулирует угол опережения зажигания. Метан горит медленнее дизельного топлива, то есть газовоздушная смесь должна воспламеняться раньше, угол опережения также регулируется в зависимости от нагрузки. Кроме того, метану нужна меньшая степень сжатия, нежели дизельному топливу. Так, в атмосферном двигателе степень сжатия снижают до 12–14. Для атмо­сферных двигателей характерен стехиометрический состав газовоздушной смеси, то есть коэффициент избытка воздуха a равен 1, что в какой-то степени компенсирует потерю мощности от снижения степени сжатия. КПД атмосферного газового двигателя на уровне 35%, тогда как у атмосферного же дизеля КПД на уровне 40%.

Автопроизводители рекомендуют использовать в газовых двигателях специальные моторные масла, отличающиеся водостойкостью, пониженной сульфатной зольностью и одновременно высоким значением щелочного числа, но не возбраняются и всесезонные масла для дизельных двигателей классов SAE 15W-40 и 10W-40, которые на практике применяются в девяти случаях из десяти.

Турбокомпрессор позволяет снизить степень сжатия до 10–12 в зависимости от размерности двигателя и давления во впускном тракте, а коэффициент избытка воздуха увеличить до 1,4–1,5. При этом КПД достигает 37%, но одновременно значительно возрастает теплонапряженность двигателя. Для сравнения: КПД турбированного дизельного двигателя достигает 50%.

Повышенная теплонапряженность газового двигателя связана с невозможностью продувки камеры сгорания при перекрытии клапанов, когда в конце такта выпуска одновременно открыты выпускные и впускные клапаны. Поток свежего воздуха, особенно в наддувном двигателе, мог бы охлаждать поверхности камеры сгорания, снижая таким образом теплонапряженность двигателя, а также снижая нагрев свежего заряда, это увеличило бы коэффициент наполнения, но для газового двигателя перекрытие клапанов недопустимо. Из-за внешнего образования газовоздушной смеси воздух всегда подается в цилиндр вместе с метаном, и выпускные клапаны в это время должны быть закрыты во избежание попадания метана в выпускной тракт и взрыва.

Читайте также:  Газогенераторный двигатель своими руками

Уменьшенная степень сжатия, повышенная теплонапряженность и особенности газовоздушного цикла требуют соответствующих изменений, в частности, в системе охлаждения, в конструкции распредвала и деталей ЦПГ, а также в применяемых для них материалах для сохранения работоспособности и ресурса. Таким образом, стоимость газового двигателя не так уж отличается от стоимости дизельного аналога, а то и выше. Плюс к этому стоимость газобаллонного оборудования.

Флагман отечественного автомобилестроения ПАО «КАМАЗ» серийно выпускает газовые 8-цилиндровые V-образные двигатели серий КамАЗ-820.60 и КамАЗ-820.70 размерностью 120х130 и рабочим объ­емом 11,762 л. Для газовых двигателей используют ЦПГ, обеспечивающую степень сжатия 12 (у дизельного КамАЗ-740 степень сжатия 17). В цилиндре газовоздушная смесь воспламеняется искровой свечой зажигания, установленной вместо форсунки.

Для большегрузных автомобилей с газовыми двигателями используют специальные свечи зажигания. Так, Federal-Mogul поставляет на рынок свечи с иридиевым центральным электродом и боковым электродом, выполненным из иридия или платины. Конструкция, материалы и характеристики электродов и самих свечей учитывают температурный режим работы большегрузного автомобиля, характерный широким диапазоном нагрузок, и сравнительно высокую степень сжатия.

Двигатели КамАЗ-820 оборудуют системой распределенного впрыска метана во впускной трубопровод через форсунки с электромагнитным дозирующим устройством. Газ инжектируется во впускной тракт каждого цилиндра индивидуально, что позволяет корректировать состав газовоздушной смеси для каждого цилиндра с целью получения минимальных выбросов вредных веществ. Расход газа регулируется микропроцессорной системой в зависимости от давления перед инжектором, подача воздуха регулируется дроссельной заслонкой с приводом от электронной педали акселератора. Микропроцесорная система управляет углом опережения зажигания, обеспечивает защиту от воспламенения метана во впускном трубопроводе при сбое в системе зажигания или неисправности клапанов, а также защиту двигателя от аварийных режимов, поддерживает заданную скорость автомобиля, обеспечивает ограничение крутящего момента на ведущих колесах автомобиля и самодиагностику при включении системы.

«КАМАЗ» в значительной степени унифицировал детали газовых и дизельных двигателей, но далеко не все, и многие внешне схожие детали для дизеля – коленвал, распредвал, поршни с шатунами и кольцами, головки блока цилиндров, турбокомпрессор, водяной насос, масляный насос, впускной трубопровод, поддон картера, картер маховика – не подходят для газового двигателя.

В апреле 2015 г. «КАМАЗ» запустил корпус газовых автомобилей мощностью 8 тыс. единиц техники в год. Производство размещено в бывшем газодизельном корпусе автозавода. Технология сборки следующая: шасси собирают и устанавливают на него газовый двигатель на главном сборочном конвейере автомобильного завода. Потом шасси буксируют в корпус газовых автомобилей для монтажа газобаллонного оборудования и проведения всего цикла испытаний, а также для обкатки автотехники и шасси. При этом газовые двигатели КАМАЗ (в том числе модернизированные с компонентной базой «БОШ»), собираемые на моторном производстве, также проходят испытания и обкатку в полном объеме.

«Автодизель» (Ярославский моторный завод) в содружестве с компанией Westport разработал и выпускает линейку газовых двигателей на базе семейства 4- и 6-цилиндровых рядных двигателей ЯМЗ-530. Шестицилиндровый вариант может устанавливаться на автомобили нового поколения «Урал NEXT».

Как уже говорилось выше, идеальный вариант газового двигателя – это непосредственный впрыск газа в камеру сгорания, но до сих пор мощнейшее глобальное машиностроение не создало такой технологии. В Германии исследования ведет консорциум Direct4Gas, возглавляемый компанией Robert Bosch GmbH в партнерстве с Daimler AG и Штутгартским научно-исследовательским институтом автомобильной техники и двигателей (FKFS). Министерство экономики и энергетики Германии поддержало проект суммой в 3,8 млн евро, что на самом деле не так уж много. Проект будет работать с 2015-го до января 2017 г. На-гора должны выдать промышленный образец системы непосредственного впрыска метана и, что не менее важно, технологию ее производства.

Читайте также:  Что за двигатель k7ja700

По сравнению с нынешними системами, использующими многоточечный впрыск газа в коллектор, перспективная система непосредственного впрыска способна на 60% увеличить крутящий момент на низких оборотах, то есть ликвидировать слабое место газового двигателя. Непосредственный впрыск решает целый комплекс «детских» болезней газового двигателя, принесенных вместе с внешним смесеобразованием.

В проекте Direct4Gas разрабатывают систему непосредственного впрыска, способную быть надежной и герметичной и дозировать точное количество газа для впрыска. Модификации самого двигателя сведены к минимуму, чтобы промышленность могла использовать прежние компоненты. Команда проекта комплектует экспериментальные газовые двигатели недавно разработанным клапаном впрыска высокого давления. Систему предполагается тестировать в лаборатории и непосредственно на транспортных средствах. Исследователи также изучают образование топливно-воздушной смеси, процесс управления зажиганием и образование токсичных газов. Долгосрочная цель консорциума – это создание условий, при которых технология сможет выйти на рынок.

Итак, газовые двигатели – это молодое направление, еще не достигшее технологической зрелости. Зрелость наступит, когда Bosch со товарищи создадут технологию непосредственно впрыска метана в камеру сгорания.

Источник

Устройство и схема работы ГБО

Описание и назначение основных элементов. Принцип работы устройства и схема газобаллонной установки.

Схема газобаллонного оборудования наиболее распостраненного четвертого поколения

Основные элементы

Редуктор-испаритель. Элемент системы, предназначенный для подогрева пропанобутановой смеси. Он контролирует испарение, уменьшает давление до атмосферного. Конструкционно газовый редуктор представляет собой механизм, состоящий из нескольких последовательно соединенных камер. Друг от друга они разделены клапанами.

Клапан электромагнитный для газа. Механизм предназначен для блокировки топливного трубопровода. Это нужно в период простоя двигателя, после его переключения на автомобильный бензин. Клапан дополнительно оснащен фильтром очистки топлива.

Клапан электромагнитный для бензина. Этот механизм прекращает подачу автомобильного бензина в карбюраторных моторах, когда они функционируют на газовой смеси. Газовый блок управления исполняет аналогичную задачу в инжекторах.

Переключатель автомобильного топлива. Этот механизм обустраивают в салоне транспортного средства. Переключатели могут отличаться конструктивно. Некоторые варианты имеют подсветку, индикаторную шкалу, которая показывает, сколько в баллоне осталось газовой смеси.

Мультиклапан. Механизм располагается на горловине баллона. В его конструкции предусмотрены следующие клапана: скоростной, расходный, заправочный. Дополнительно мультиклапан оснащен заборной трубкой, измерителем уровня топливной смеси. Клапан скоростной при поломке трубопровода предупреждает газовую течь.

Венткамера. Этот компонент системы также расположен на горловине баллона. В коробку помещают мультиклапан. Основная функция этого элемента – отвод наружу газовых паров при возникновении в багажнике газовой течи.

Газовый баллон (специальная емкость для содержания сжиженного газа). Он может иметь торроидальную или цилиндрическую форму. Первый вариант предоставляет возможность размещать емкость с газом в нише, предназначенной для хранения запасного колеса. Согласно правилам техники безопасности при эксплуатации баллонов с газом емкость заполняется газовой смесью всего на 80% от ее максимальной вместимости.

Разбор деталей комплекта газобаллонного оборудования четвертого поколения: как выглядят детали устройства, зачем они нужны и как все работает

Принцип работы

Необходимо отметить, питание газовой смесью, исполнение всей газобаллонной системы предыдущих поколений значительно проще, чем конструкция бензиновой системы подачи топливной смеси.

Перевод транспортного средства для работы на газобаллонном оборудовании, его соответствующее переустройство выглядит таким образом. Предварительно в багажном, грузовом отделении, под днищем машины, на раме монтируют специальную емкость, предназначенную для заполнения газом. В двигательном отсеке (подкапотное пространство) устанавливают редуктор-испаритель, дополнительные устройства, функции которых связаны с подачей в мотор газовой смеси, и механизмы регулировки топлива.

Баллоны заправляются жидкой смесью пропана-бутана. Если давление соответствует атмосферному, топливо имеет газообразное состояние. Если давление выше атмосферного, газ преобразуется в жидкое топливо, которое при бытовых температурах может испаряться. Поэтому под сжиженный газ используются только герметичные емкости. Давление в них может составлять 2-16 атмосфер.

Читайте также:  Пежо 4008 двигатель технические характеристики

Газовые пары формируют давление, благодаря которому они подаются в газовый трубопровод повышенного давления. Заправка газового баллона и подача из него топлива в магистраль производится через мультиклапан. Для выполнения заправки дополнительно применяется специальное выносное приспособление.

Сжиженная газовая смесь направляется по трубопроводу и проходит через газовый клапан с фильтровальным элементом. Такая дополнительная фильтрация позволяет эффективнее очищать топливо от смолистых соединений, прочих примесей. Это устройство также предназначено для блокировки подачи газовой смеси при отключении зажигания, переключении рабочего режима двигателя на автомобильный бензин.

После фильтрации топливная смесь направляется в редуктор. Здесь давление газовой смеси падает до показателя, составляющего примерно 1 атмосферу. Снижение давления способствует испарению жидкой газовой смеси. При прохождении данного процесса редуктор активно охлаждается. Именно по данной причине его соединяют с системой охлаждения автомобильного двигателя. Подогретая охлаждающая жидкость в результате циркуляции по системе не дает редуктору обмерзать. В холодный период года рекомендуется производить запуск автомобильным бензином, а уже после предварительного прогрева двигателя стоит переводить его рабочий режим на газобаллонное оборудование. Данное требование предполагает выход мотора на рабочий температурный режим, а также подогрев охлаждающей жидкости до необходимой температуры.

После редуктора уже парообразный газ направляется в цилиндры мотора. В ГБ системе отсутствует деталь, схожая функционально с бензонасосом. Газовая смесь содержится в баллоне под определенным давлением, и поступает в редуктор автономно, дополнительная подкачка для этого не требуется. Благодаря этому система ГБО по конструкции значительно проще. А способность газа преобразовываться из жидкости в пар при изменении показателей температуры, давления еще больше сокращает количество элементов конструкции ГБО установок.

Специальный переключатель, установленный в автомобильном салоне, позволяет переключаться с бензина на газ и обратно. После выключения зажигания переключатель занимает нейтральное положение. Газобаллонное оборудование может быть наделено дополнительно функцией отключения подачи газовой смеси, если в автомобильном двигателе отсутствует искра.

Схема установки

  1. Емкость с газом (баллон)
  2. Мультиклапан
  3. Топливный трубопровод высокого давления
  4. Заправочное выносное приспособление
  5. Клапан для газа
  6. Редуктор-испаритель
  7. Дозатор топливной смеси
  8. Клапан для бензина
  9. Топливный переключатель

По схеме подачи топлива ГБ оборудование условно подразделяется на поколения. Например, рассмотрим ранние системы, проанализируем их рабочий алгоритм. Пропанобутановая смесь в сжиженном состоянии, содержащаяся под определенным давлением в специализированной емкости, подается в трубопровод повышенного давления через специальный мультиклапан, фиксирующий расход топлива. С помощью этого клапана и выносного заправочного приспособления производится заправка. Далее сжиженный газ по трубопроводу проходит через газовый клапан, дополнительно оснащенный фильтрующим элементом, где осуществляется его очистка от различных примесей, смолистых соединений. Этот механизм системы при выключенном зажигании, переключении рабочего режима двигателя на автобензин перекрывает подачу газовой смеси.

Далее по трубопроводу чистый газ перемещается на редуктор, где его давление уменьшается до атмосферного. В результате этой процедуры газовая смесь начинает интенсивно испаряться. В коллекторе работающего мотора образуется разряжение, что предоставляет возможность газовой смеси пройти по рукаву пониженного давления. Дальше газ направляется через дозатор в топливный смеситель, который размещен между дросселем, воздушным фильтром. На карбюраторных моторах может использоваться газовый штуцер.

Нужный вид топлива для работы двигателя включается топливным переключателем из автомобильного салона, который размещен на панели. При включении режима «газ» переключатель активизирует открытие газового клапана, одновременно перекрывается бензиновый клапан. При переключении рабочего режима автомобильного двигателя на бензин, соответственно перекрывается газовый клапан. Благодаря предусмотренной для переключателя подсветке всегда можно посмотреть, на каком топливе работает мотор.

Сертифицированный мультибрендовый центр по установке, обслуживанию и ремонту газового оборудования:

Источник

Adblock
detector