Электростатические двигатели своими руками

2 Схемы

Принципиальные электросхемы, подключение устройств и распиновка разъёмов

Электростатический генератор своими руками

Принцип работы генератора статического электричества (ещё их называют электрофорные машины) заключается в том, что диски вращаются относительно друг друга в противоположные стороны и создают положительные и отрицательные заряды. При вращении дисков по мере накопления зарядов происходит разряд — молния между электродами.

Как это работает — теория

Вращение дисков с металлическими секторами приводит к переносу электрического заряда внутри машины, который хранится в конденсаторах до момента возникновения искры или заряда утечки.

Самые важные части в электрофорном агрегате – нейтрализаторы. Это две перемычки со щетками установленные крестом. Если хотя бы одну из четырех щеток отодвинуть от сегментов, машинка перестает работать. Хотя казалось бы диски вращаются, электризуются трением о воздух и значит электричество вырабатывается.

Нейтрализатор делает следующее: он перетаскивает заряд с одной половинки диска на другую и диск оказывается не просто заряжен, а заряжен избирательно — не по всей плоскости.

Другими словами, диск собирает заряды из воздуха, а нейтрализаторы их перераспределяют. Заряд снимается щеткой, движется по проводнику к противоположной щетке и в тот момент когда напротив сегмента появится сегмент второго диска — перескакивает на него.

Далее этот сегмент подходит к щетке второго нейтрализатора и процесс повторяется, но уже на другом диске. Таким образом происходит кругооборот зарядов между дисками в процессе которого воздух между сегментами ионизируется и разделяется. В результате накачки увеличивается напряжение, кроме того в машинке работает эффект раздвигания обкладок конденсатора, что также способствует увеличению напряжения.

Миниатюрное устройство по созданию таких безвредных молний (но не для микроэлектроники) легко сделать своими руками.

Данный электростатический генератор способен генерировать более 20000 Вольт, но малый ток делает его безопасным для использования без специальных мер предосторожности.

Характеристики устройства

  • Высота: около 140 мм
  • Ширина: приблизительно 120 мм
  • Питание: 3 В 0,3 А
  • Статический заряд: 20 кВ
  • Диаметр диска: 120 мм

Руками тут ничего крутить не нужно (как это было в прототипе позапрошлого века) — всё делают 2 электромотора. достаточно нажать на кнопку включения и подождать некоторое время до накопления заряда на электродах.

Материалы и компоненты

Необходимо будет для монтажа: паяльник и припой, отвертка и плоскогубцы. Два мотора от старых CD плееров и всякая крепёжная мелочёвка.

Генератор работает от двух батареек АА и способен создавать разряды длинной 2 см. Самое сложное тут — 120 мм диски. Их нужно изготовить по такому принципу: взять два лазерных диска от CD или DVD. Сегменты приклеить из алюминиевого скотча (25 секторов). Приклеить диски к моторчикам. Сделать щетки из алюминиевых полосок.

Если всё сделать и настроить как надо, то искра достигнет размеров около 20 мм, а разряд будет пробивать каждые 0,5 сек.

НАЖМИТЕ ТУТ И ОТКРОЙТЕ КОММЕНТАРИИ

Что бы затем, полученной статикой запустить генератор — хотя бы на 10 ватт, этой мощности статики не хватит. А что бы иметь сотню ватт генератор на выходе статики, в качестве нагрузки, диаметр статики дисков должен быть не один метр. К тому же — для согласования кило ваттных генераторов с статикой дисков, у генераторов должна быть исключительно — не стандартная технология. Я бы пошёл по пути — ИСПОЛЬЗОВАНИЯ готовых стандартных в промышленности генераторов из АД.

Другое дело; Взяв Предпочтительное, с целю использовать в технологии; При этом ещё и пытаться осознать написанное под схемой качера: http://uploads.ru/MmRfO.jpg и пробовать сие адаптировать под тут показанное, под ИНДУКЦИОНКУ, Моторы, роторы, турбины, ветряки, ВД, БТГ, самоходы колёс, маятников, авто Тесла, тогда окажется понятным и то, что 400 лет назад был САМОХОД тележек Леонардо Да Винчи. … — Подробнее об использовании СЕ можно продолжить и голосом в скайп : FILL1133

И крепёжные пластины и диски имеют значок молнии — высокого напряжения, и разметку для проводников именно электрофорной машины, а значит они изготовлены специально для этого промышленным способом. Итого: купили электрофорную машину, разобрали, собрали, и гордо рассказали, как легко собрать электрофорую машину из старых CD. Хоть раз попробуйте не пиздеть, а реально сделать что-то из подручных материалов.

Источник

Электростатические двигатели своими руками

Конструкторы считают, что у электростатического двигателя, несомненно, большое практическое будущее. Они мечтают собрать малогабаритный быстроходный «плоский» двигатель для вертолета, работающий от энергии грозового облака. Бесшумный и экономичный электростатический моторчик — неплохое дополнение к будущим разработкам моделей компрессоров, вентиляционных устройств и лентопротяжных механизмов магнитофонов.

Модель такого двигателя сконструировали и собрали на Мелитопольской станции юных техников под руководством преподавателя Н.С.Трахтенберга.

Модель двигателя состоит из двух узлов: блока питания и самого двигателя.(Рис 1) Блок питания должен обеспечивать ток 3-4 мА при напряжении 10-15 кВ. Для получения высокого напряжения можно использовать без существенных переделок блок строчной развертки от любого старого телевизора. Однако лучше собрать автономный полупроводниковый высоковольтный преобразователь напряжения.

Этот прибор работает от двух батареек для карманного фонаря КБС 0.5 (3336Л), соединенных последовательно. Трансформатор Тр1 и транзистор Т1 образуют генератор незатухающих колебаний в диапазоне звуковых частот. На обмотке III трансформатора Тр1 индуктируется переменный ток напряжением 7-10кВ, а обмотки I и IV подключены к нитям накала (катодам) высоковольтных кенотронов Л1 и Л2 типа 1Ц1С, работающих в выпрямителе, собранном по схеме удвоения напряжения.

Трансформатор преобразователя — самодельный. Его обмотки выполняются на сердечнике, составленном из двух ферритовых полуколец от отклоняющей системы телевизора.

Сначала из гетинакса или оргстекла выпилите 12-14 щечек так, чтобы в их отверстия проходили половинки ферритового сердечника. Равномерно распределите их на двух полукольцах и закрепите клеем.

В одном промежутке между щечками разместите обмотку I, которая состоит из 40+40 витков провода ПЭЛ или ПЭВ диаметром 0.35-0.6 мм. В двух соседних секциях уложите по 7 витков такого же провода для обмоток II и IV. Остальные секции полуколец заполните проводом ПЭЛ или ПЭВ 0.08-0.1. В каждой секции по 1800-2000 витков, а всего обмотка III должна иметь 15000-20000 витков. Перед выполнением обмоток ферритовое кольцо тщательно заизолируйте прокладкой из хлорвиниловой или полистироловой пленки. Концы катушек закрепите в отверстиях щечек. После выполнения обмоток ферритовые полукольца склейте клеем БФ-2, а катушки пропитайте полистироловым клеем или органическим стеклом, растворенным в дихлорэтане.

Читайте также:  Подогреватели двигателя фен что это такое

Конденсаторы С1-С3 емкостью 390 пф типа ПОВ рассчитаны на рабочее напряжение не менее 15 кВ. Сопротивление резистора R1 подбирается экспериментально при регулировке схемы.

Мощный низкочастотный транзистор Т1 типа П209-П210 укрепите на металлическом радиаторе из алюминия или меди и разместите подальше от кенотронов. Все детали блока питания монтируются на панели произвольных размеров из оргстекла или гетинакса. Сверху панель закрывается кожухом с отверстиями.(Схему другого высоковольтного генератора можно выбрать здесь).

Конструкция электростатического двигателя показана на рисунке 2. Статор вырежьте из пластины гетинакса толщиной 10-12 мм. Диаметр его внутреннего отверстия 100 мм. По периметру статора на равных расстояниях друг от друга запрессовано 16 электродов из латуни. К этим электродам подводиться напряжение от преобразователя.

Все четные электроды соединяются между собой одним проводником и подключаются к одному выводу выпрямителя, а нечетные соединяются другим проводником и подключаются к другому выводу.

Ротор выточите оз органического стекла. Он имеет форму диска диаметром 80 мм и толщиной 3-4 мм. В центре диска запрессован миниатюрный шариковый подшипник. Ротор двигателя тщательно отбалансируйте, чтобы он находился в равновесии. Ось ротора крепиться к кронштейну из гетинакса, который в свою очередь, соединяется со статором.

Латунные электроды статора отогните в одну сторону. Между концами электродов и ротором необходим зазаор 0.5-0.7 мм.

Когда на электроды подается высокое напряжение, между ними возникает электрическое поле. Это поле поляризует диэлектрик, из которого состоит ротор. Поляризация диэлектрика способствует стеканию электрических зарядов с электродов на ротор. заряды приходят в движение под действием сил поля и создают крутящий момент.

По мере поворота ротора оказываются у электрода с противоположной полярностью. Сила, удерживающая заряд на ободе ротора, становиться минимальной. Это способствует переходу заряда на электрод противоположной полярности, и в цепи появляется электрический ток. на участке цепи между электродами заряды «транспортируются» вращающимся ротором. Скорость вращения двигателя стабильна и зависит от числа электродов и величины напряжения, подаваемого на них.

Мощность электростатического двигателя можно значительно повысить, если наклеить на обод ротора узкие полоски алюминиевой фольги, расстояние между которыми должно быть не менее, чем расстояние между концами электродов.

ЭЛЕКТРОСТАТИЧЕСКИЙ ДВИГАТЕЛЬ ЛИТОВЧЕНКО

Сергей Сергеевич Литовченко, высокий, стройный, загорелый, под пятьдесят, кандидат технических наук, заслуженный изобретатель РСФСР, автор 60 изобретений, буднично открывает портфель, вынимает несколько деталей размером с миску, легко соединяет их и втыкает штепсельную вилку в розетку сети. Так и подмывает побиться с ним об заклад, что самоделка не заработает. Очень уж она неказиста и нехитра с виду. Посмотрите, как устроен один из двигателей, а их у изобретателя с десяток (рис. 1).

Обычный цилиндр из капролона высотой 54 мм. На его внутренней поверхности диаметром 146 мм вдоль оси равномерно и по отдельности уложено 36 бронзовых проволок диаметром по 0,8 мм. На половину из них от выпрямителя подается высокий потенциал положительного знака, а на другую половину отрицательного. В полость цилиндра вставляется опять-таки капролоновая болванка без каких-либо электродов высотой 40 мм, диаметром 140 мм и массой 200 г. Впрочем, можно воспользоваться и алюминиевой звездочкой с 36 лучами. Вот и все премудрости.

Если вы знакомы с электротехникой, то на ум приходит ближайший аналог электростатический двигатель (рис. 2). Там тоже на статор подается высокое напряжение, но его надо подать и на ротор. А, кроме того, естественно, нужны щетки, чтобы при провороте ротора его полудиски перезарядились и снова оттолкнулись от пластинок статора.

На исключительно важной роли щеток, пожалуй, следует остановиться особо. Ведь, по существу, нам известны электромашины только переменного тока (или заряда). Машины постоянного тока (или заряда) получают из первых, дополняя их выпрямителями, механическими или электрическими. Это и понятно: немыслимо длительное время толкать ротор в одну и ту же сторону силами одного и того же тока (или заряда) либо машина должна стать неприемлемо большой, либо ток (заряд) должен быть чудовищно велик. Итак, бесщеточных машин просто быть не может, и эта истина уже многие десятки лет считается раз и навсегда доказанной. Сотни теоретиков, тысячи изобретателей сами убедились в ее правоте и убедили электриков всех последующих поколений.

Самый простой вентилятор: его ротор вращается между электродами с постоянным напряжением.

Но «чудо» все же происходит. В капролоновом цилиндре-статоре со скрипом и легким шелестом начинает набирать обороты капролоновая болванка ротор, который через несколько секунд превращается в бешено вращающийся овал. Между ротором и электродами статора проскакивают искорки, от моторчика попахивает озоном, как при грозе. Если погасить свет, кольцеобразный зазор таинственно мерцает, тихонько потрескивают электрические разряды.

Вал двигателя можно, хотя и с трудом, затормозить пальцами, ведь крутящий момент не превышает 40 — 80 Гсм. Остановленный ротор на ощупь холоден, да это и не удивительно: разные модификации двигателя потребляют мощности 4 — 6 Вт при очень малых токах (0,2 — 0,6 мА), но зато при высоких напряжениях (1 — 8 кВ).

«Ротор может вращаться в любую сторону», — говорит изобретатель. Он задерживает вал и прокручивает его в обратном направлении. Болванка снова, чуть поскрипывая, набирает бешеные обороты, 25 — 40 в секунду. Затем Сергей Сергеевич демонстрирует нам и другие машинки, созданные им совместно с Н. Тимченко. Мы соглашаемся, что дело не меняется от того, сделан ротор из диэлектрика или из металла. Только в первом случае цилиндры могут быть гладкими, а во втором обязательно лучевыми, звездообразными, словно велосипедное колесо со спицами, но без обода. Кстати, если ротор звездочка, то некоторая ориентация ее лучей способствует предпочтительному вращению в одну сторону, но противоположное перемещение по-прежнему не запрещается. Разряды с электродов статора обычно стекают навстречу движущимся точкам ротора.

Чем же поражают эти двигатели? Ну, во-первых, отсутствием щеток. Стало быть, при эксплуатации не надо беспокоиться об их истирании, изломе, износе, о потерях за счет кругового огня на коллекторе. Во-вторых, своей предельной простотой: вал с подпятниками, да статор с электродами. В-третьих, быстротой вращения ротора, причем в любую сторону куда пожелаете. Вполне возможно, что число оборотов удастся повысить еще больше, поскольку здесь нет вращающегося поля, как в машинах переменного тока, ограничений на такое увеличение не предвидится.

Читайте также:  Двигатель набирает обороты без нажатия на педаль газа

Теперь оставим фактическую сторону вопроса: как работает двигатель (хотя Литовченко, Тимченко и подключившиеся к их исследованиям десятки специалистов уже собрали солидный экспериментальный материал). Пора ступить на зыбкую тропу гипотез: почему же он, собственно, работает? И профессионалы, и любители от науки высказали немало догадок о причинах вращения роторов. Если отбросить предположения, в которых непонятное явление описывается гораздо более непонятными воздействиями «черных дыр», пульсациями гравитационного поля, неоднородностями физического вакуума, то останется 5 — 6 добротных инженерных мнений. Вкратце о них можно сказать следующее.

По одному из предположений, сила вращения объясняется эффектом, обнаруженным Г. Герцем в 1881 году и подробно описанным его соотечественником Г. Квинке через 15 лет. Этот эффект уже неплохо изучили ученые Москвы и Минска, занятые магнитогидродинамическими машинами, жидкостными электронасосами.

Его суть сводится к спонтанному вращению диэлектрического образца в электрическом поле из-за того, что жидкая, так называемая электрореологическая, среда поляризуется, а потом смещается кулоновскими силами поля, увлекая за собой ротор. Но расчеты показывают: эти силы тяги куда меньше тех, что развивает необычный мотор. К тому же эффект Герца Квинке проявляется при много больших напряжениях (10 — 20 кВ). И еще: если на образец нанести тонкое металлическое покрытие, эффект исчезнет, а у Литовченко отлично крутятся алюминиевые звездочки. Наконец, здесь нет и речи о какой-либо специальной жидкости.

Точно так же отпадает вторая гипотеза об электрическом ветре, якобы стекающем с ротора и тянущем его реактивными силами. Ведь заряды стекают с электродов статора навстречу движению ротора, а с ротора по ходу движения. И в том, и другом случаях они должны тормозить ротор. Опять же у потоков плазмы столь малое количество движения, что оно не может быть причиной вращения, для которого, как показали измерения, создаются силы примерно 10 Г.

Еще уязвимее третье объяснение принципа действия нового мотора. Сторонники этого мнения вспоминают об опытах Отто фон Герике, вошедшего в историю своими магдебургскими полушариями (две четверки лошадей не могли разъять отвакуумированные полусферы, прижатые друг к другу атмосферным давлением). Так вот, в 1660 году Герике наэлектризовал ладонью серный шар с голову ребенка. Пушинки притягивались, а, коснувшись шара, отталкивались. Об электрическом танце бумажек знал И. Ньютон. Сегодня хорошо известно, что в электрическом поле тела поляризуются и притягиваются к заряду, источнику поля. Коснувшись, они заряжаются одноименно и потому отталкиваются.

Поначалу и сам Литовченко пытался использовать электростатическую индукцию «в лоб». Металлический шарик, бумажная лента, текстолитовая палочка метались туда-сюда между пластинами конденсатора (рис.3), В одной из ранних статей (С.С. Литовченко, Н. М. Тимченко. «Явление непосредственного преобразования электрической энергии в механическую». Техника средств связи, вып. 7, 1978) описано, что от колебательного движения действительно удалось перейти к вращательному.

Но как это могло случиться? — вот в чем вопрос. Казалось, что проскоки обеспечиваются инерцией и упругостью ротора. Но если бы ротор смещался за счет притяжения к статору наведенных зарядов, то, поколебавшись и затратив на трение первичный импульс, он, в конце концов, занял бы устойчивое положение, электрод против электрода, попав в потенциальную яму. Но этого нет, ротор раскручивается, стало быть, действуют какие то другие силы. Вот их то и надо найти.

Еще одну, четвертую, гипотезу можно назвать «разряд как щетка». Наведенный заряд после приближения к электроду статора якобы стекает с ротора, а тот, уже нейтральный, по инерции прокручивается дальше. Следующий, очередной электрод вновь наводит на роторе заряды и притягивает их к себе вместе с ним. Они опять стекают, ротор проскакивает и т. д.

Бесспорно, столь «умно» ведя себя, разряд действительно сыграет роль электрощетки, дергая ротор в одну сторону. Если бы это было на самом деле, изобретение такого разрядного выпрямителя принесло бы в технике немало пользы. Что-то не видно причин предпочтительной односторонней зарядки-разрядки, да и распределение зарядов на статоре и роторе должно быть строго равномерным.

С другой стороны, полупериодный разрядный выпрямитель кажется правдоподобным. Ведь сочетание напряжений, токов и зазоров в новом двигателе как раз соответствует зоне зажигания самостоятельного разряда в воздухе (так называемая кривая Пашена). Мало того, работа двигателя явно зависит от погоды: давления, влажности, температуры. Это ли не свидетельство «разрядной» причины вращения, подтверждение коммутаторной роли тлеющего разряда?

Но не менее убедительно считать, что разряды просто маскируют истинные причины смещения ротора. Мало того, разрядные токи ухудшают экономичность работы двигателя: в одной из моделей механическая мощность на валу равна 0,16 Вт, а от высоковольтного источника потребляется 4,8 Вт. Несложно видеть, что КПД не превышает 3,4%. Конечно, для массового двигателя эта цифра мизерна. Вот бы убрать разряды с электродов статора! Если ротор будет крутиться по-прежнему, значит, гипотеза «разряд как щетка» отпадает. К тому же КПД неминуемо вырастет!

Пятое предположение появляется на базе следующих данных. Измерения, проделанные Литовченко, показали, что установившиеся обороты двигателя зависят от квадрата напряжения на электродах. Растет напряжение вдвое, обороты возрастают в 4 раза. Мало того, и вращающий момент на валу также пропорционален квадрату напряжения. Вывод очевиден: величины зарядов на статоре и роторе прямо зависят от напряжения. А следовательно, силы вращения зависят от произведения зарядов, то есть причина появления этих сил явно кулоновская. Попросту говоря, именно притяжение зарядов на электродах статора и зарядов, как-то наведенных на роторе, обеспечивает раскрутку. Теперь надо бы отыскать причину уменьшения этих сил после того, как луч ротора минует электрод статора. Но причина эта уже известна давно. Заряды на электродах статора вовсе не постоянны во времени, они беспрерывно пульсируют, ибо меняются электрические параметры цепи высокого напряжения!

Читайте также:  Частота оборотов двигателя автомобиля

Каждый луч ротора меняет емкость зазора между соседними электродами. Значит, в цепи статора потечет ток, подзаряжающий электроды. Частота пульсации тока зависит от емкости и индуктивности контура, а также жестко связана с оборотами ротора. Когда фазы электрических и механических колебаний окажутся смещенными на 20-300, подтягивание ротора станет сильнее торможения и он ускорится.

Если это все верно, то есть напряжение на электродах статора меняется циклично с зазором, то Литовченко изобрел автоколебательную электромеханическую систему, состоящую из ротора и электрической цепи статора. Примерно такой преобразователь изображен на рисунке 4. Источник энергии — выпрямитель или заряженный конденсатор (проверено на опыте). Возбуждаются колебания тока в статоре за счет «наведения зарядов на лучах ротора. Луч ротора втягивается в зазор, емкость статорного контура растет, заряд статорных электродов увеличивается, сила притяжения ротора статором становится больше.

Наконец луч ротора проскакивает электрод статора, силы между ними ослабевают, потому что заряд спадает по величине. Ротор раскручивается все быстрее, пока трение в осях не уравновесит момент вращения. Несложно видеть, что в статорной цепи устанавливаются мало затухающие колебания тока, зависящие в основном от напряжения, числа электродов, инерции ротора и трения в осях. Все это можно измерить экспериментальным путем, примерно этим и заняты заинтересованные специалисты.

Общая математическая теория автоколебаний разработана детально, но аналитические решения нелинейных дифференциальных уравнений второго порядка удаются нечасто. Автоколебательные преобразователи применяются весьма широко это анкерные часовые механизмы, радиотехнические ламповые генераторы колебаний. В некоторой степени новый двигатель можно уподобить параметрическому генератору, построенному в 1932 году Л.И. Мандельштамом и Н.Д. Папалекси. И тут и там меняются емкости контура, правда, по разным причинам. Энергия забирается либо от механического привода, либо от высоковольтного источника. Очевидна аналогия нового двигателя и с механизмами, использующими вынужденные колебания, только вместо навязывания заданной частоты электрическим источником она подбирается сама собой вместе с механической частотой вращения ротора.

Любопытно, что в опытах Литовченко столбики масла или подкрашенного воздуха колеблются около электродов, стало быть, в статорной цепи токи пульсируют. Нетрудно заметить, в последних рассуждениях о принципе работы двигателя мы исходили из того, что ротор металлический, звездообразный. Если же ротор диэлектрическая болванка, то картина хотя и становится несколько сложнее, но не теряет своей наглядности. При вращении сплошной ротор сильно деформируется, стало быть, зазоры меняются, а вместе с ними и емкость. Механизм действия остается тем же, но частоты автоколебаний выше, а фазы и амплитуды меньше. Разделять диэлектрический ротор на части нет нужды, он сам вибрирует, деформируется и гнется. Кстати, вот почему при работе двигателя слышны щелчки, скрипы и удары от зацеплений.

Итак, похоже, что изобретен бесколлекторный автоколебательный преобразователь электрической и механической энергии. В нем оригинально меняется емкость колебательного контура, за счет электростатической индукции. Удачно подобраны форма и материал роторов эмпирическим путем выполнено необходимое условие самовозбуждения: ведь жесткий массивный ротор неизбежно остановится, попав в равновесное положение.

Плохо то, что у конструкции низкий КПД, но это, как говорится, дело наживное всегда отыщутся способы повышения экономичности работы. Даже если устранить разряды, потери на трение в осях ротора и электрические потери в статорном контуре останутся. Обороты двигателя довольно стабильны, но давать нагрузку на вал опасно: из-за мягкой нагрузочной характеристики резонансного типа (резонанс напряжений) обороты резко изменяются. Вот почему силовые электродвигатели могут и не получиться, хотя в принципе ничто не мешает ввести быстродействующее регулирование напряжения на статоре. Возможно, что новые преобразователи найдут себе место в слаботочной технике в виде генераторов колебаний, регуляторов, стабилизаторов электрической частоты, задатчиков механических оборотов.

Но не забудьте все это лишь предположения. Поиски продолжаются. Придя домой после работы, Литовченко запирается в ванной комнате, где что-то паяет, вытачивает и клеит. Его засыпали письмами энтузиасты. К исследованиям подключились десятки научных лабораторий. И вот последние новости из Калуги: если на статор подать не постоянное, а переменное напряжение, двигатель работает лучше!

Подача переменного напряжения на электроды статора чрезвычайно расширит круг потребителей нового двигателя, потому что теперь оказываются излишними выпрямители. Упрощение и удешевление и без того недорогой конструкции значительное, а физика процесса от этого вряд ли меняется. Действительно, в промышленности переменным считается напряжение, величина которого пульсирует 50 раз в секунду. Для нас эта частота представляется огромной, но для электронов, создающих электрические токи, она почти незаметна. Поэтому столь медленно меняющиеся электрические поля все равно принято считать статическими, точнее квазистатическими. Вот почему в поисках объяснения принципа работы двигатель Литовченко по-прежнему остается в классе машин электростатических, а лучше квазиэлектростатических.

Подписывайся на Physics.Math.Code.Books и читай интересные статьи по тегу #article@physics_math

Может показаться, что вся эта история с калужским изобретением не столь уж важна, чтобы уделять ему много внимания. Но нет, работу Литовченко, скажем прямо, следует считать незаурядной, по крайней мере по трем причинам.

Во-первых, в электротехнике что-то не видно электрических машин столь же простой конструкции. Самые массовые двигатели, на плечах которых поистине держится вся промышленность мира, асинхронные. В них ротор предельно прост, его без особой натяжки можно назвать металлической болванкой. А машинки Литовченко проще! Это ли не событие? Поскольку в них вообще нет никаких обмоток, отпадает надобность в электроизоляции проводников самой трудоемкой работе при изготовлении электродвигателей любого типа.

Второй довод: кулоновские силы неизмеримо больше магнитных, но это преимущество обычно не используется из-за трудностей удержания зарядов на проводниках. Пробой изоляционных промежутков сводит на нет все достоинства электростатических машин. Досадно, но располагаемые нами материалы не позволяют широко использовать силы Кулона, и мы вынуждены обходиться куда меньшими силами Ампера Лоренца.

Отсюда как раз проистекает третий довод в пользу нового электромотора: электротехника неминуемо сместится в сторону пополнения электростатическими конструкциями, радикально изменив свой облик в ближайшие десятилетия. С помощью электростатических полей инженеры уже научились окрашивать, прясть, изготавливать искусственный ворс, улавливать пыль дымовых газов, но это лишь первые весточки грядущий весны под названием «электротехнология».

Источник

Adblock
detector