Электрореактивный двигатель принцип работы

Электрореактивный двигатель принцип работы

Идея использовать для ускорения рабочего тела (РТ) в реактивных двигателях электрическую энергию возникла практически в начале развития ракетной техники. Известно, что такую идею высказывал К.Э. Циолковский. В 1916 — 1917 годах Р. Годдард провёл первые эксперименты, а в 30-х годах XX столетия в СССР под руководством В.П. Глушко был создан один из первых действующих ЭРД.

С самого начала предполагалось, что разнесение источника энергии и ускоряемого вещества позволит обеспечить высокую скорость истечения РТ, а также и меньшую массу космического аппарата (КА) за счёт снижения массы хранимого рабочего тела. Действительно, в сравнении с другими ракетными двигателями ЭРД позволяют значительно увеличить срок активного существования (САС) КА, существенно при этом снизив массу двигательной установки (ДУ), что, соответственно, позволяет увеличить полезную нагрузку, либо улучшить массо-габаритные характеристики самого КА.

Расчёты показывают, что использование ЭРД позволит сократить длительность полёта к дальним планетам (в некоторых случаях даже сделать такие полёты возможными) или, при той же длительности полёта, увеличить полезную нагрузку.

Начиная с середины 60-х годов в СССР и в США начались натурные испытания ЭРД, а в начале 70-х ЭРД стали использоваться как штатные ДУ.

В настоящее время ЭРД широко используются как в ДУ спутников Земли, так и в ДУ межпланетных КА.

Классификация ЭРД

Классификация ЭРД не устоялась, однако в русскоязычной литературе обычно принято классифицировать ЭРД по преобладающему механизму ускорения частиц. Различают следующие типы двигателей:

ЭТД, в свою очередь, делятся на электронагревные (ЭНД) и электродуговые (ЭДД) двигатели.

Электростатические делятся на ионные (в т.ч. коллоидные) двигатели (ИД, КД) — ускорители частиц в униполярном пучке, и ускорители частиц в квазинейтральной плазме. К последним относятся ускорители с замкнутым дрейфом электронов и протяжённой (УЗДП) или укороченной (УЗДУ) зоной ускорения. Первые принято называть стационарными плазменными двигателями (СПД), также встречается (всё реже) наименование — линейный холловский двигатель (ЛХД), в западной литературе именуется холловским двигателем. УЗДУ обычно называются двигателями с ускорением в анодном слое (ДАС).

К сильноточным (магнитоплазменным, магнитодинамическим) относят двигатели с собственным магнитным полем и двигатели с внешним магнитным полем (например, торцевой холловский двигатель — ТХД).

Импульсные двигатели используют кинетическую энергию газов, появляющихся при испарении твёрдого тела в электрическом разряде.

В качестве рабочего тела в ЭРД могут применяться любые жидкости и газы, а также их смеси. Тем не менее, для каждого типа двигателей существуют рабочие тела, применение которых позволяет достигнуть наилучших результатов. Для ЭТД традиционно используется аммиак, для электростатических — ксенон, для сильноточных — литий, для импульсных — фторопласт.

Недостатком ксенона является его стоимость, обусловленная небольшим годовым производством (менее 10 тонн в год во всём мире), что вынуждает исследователей искать другие РТ, похожие по характеристикам, но менее дорогие. В качестве основного кандидата на замену рассматривается аргон. Он также является инертным газом, но, в отличии от ксенона имеет большую энергию ионизации при меньшей атомной массе. Энергия, затраченная на ионизацию на единицу ускоренной массы, является одним из источников потерь КПД.

Читайте также:  Ssangyong new actyon обороты двигателя

Краткие технические характеристики

ЭРД характеризуются малым массовым расходом РТ и высокой скоростью истечения ускоренного потока частиц. Нижняя граница скорости истечения примерно совпадает с верхней границей скорости истечения струи химического двигателя и составляет около 3 000 м/с. Верхняя граница теоретически неограничена (в пределах скорости света), однако для перспективных моделей двигателей рассматривается скорость, не превышающая 200 000 м/с. В настоящее время для двигателей различных типов оптимальной считается скорость истечения от 16 000 до 60 000 м/с.

В связи с тем, что процесс ускорения в ЭРД проходит при низком давлении в ускорительном канале (концентрация частиц не превышает 10 20 частиц/м 3 ), плотность тяги довольно мала, что ограничивает применение ЭРД: внешнее давление не должно превышать давление в ускорительном канале, а ускорение КА очень мало (десятые или даже сотые g). Исключением из этого правила могут быть ЭДД на малых КА.

Электрическая мощность ЭРД колеблется от сотен ватт до мегаватт. Применяемые в настоящее время на КА ЭРД имеют мощность от 800 до 2 000 Вт.

ЭРД характеризуются не очень высоким КПД — от 30 до 60%.

История

В 1964 в системе ориентации советских КА «Зонд-2» в течение 70 минут функционировали 6 эрозионных импульсных РД, работавших на фторопласте; получаемые плазменные сгустки имели температуру

30 000 К и истекали со скоростью до 16 км/с (конденсаторная батарея имела ёмкость 100 мкф, рабочее напряжение составляло

1 кВ). В США подобные испытания проводились в 1968 на КА «ЛЭС-6». В 1961 пинчевый импульсный РД американской фирмы «Рипаблик авиэйшен» (англ. Republic Aviation ) развил на стенде тягу 45 мН при удельном импульсе 10—70 км/с. В 1971 в системе коррекции советского ИСЗ «Метеор» работали два торцевых холловских РД, каждый из которых при мощности электропитания

0,5 кВт развивал тягу 18—23 мН и удельный импульс свыше 8 км/с. РД имели размер 108×114×190 мм, массу 32,5 кг и запас РТ (сжатый ксенон) 2,4 кг. Во время одного из включений они проработали непрерывно 140 ч.

Перспективы

В настоящее время многими странами исследуются вопросы создания пилотируемых межпланетных кораблей с ЭРДУ. Существующие ЭРД не являются оптимальными для использования в качестве маршевых двигателей для таких кораблей, в связи с чем в ближайшем будущем следует ожидать возобновления интереса к разработке сильноточных ЭРД на жидкометаллическом РТ (висмут, литий, калий, цезий) с электрической мощностью до 1 МВт, способных длительно работать при токах силой до 5—10 кА. Эти РД должны развивать тягу до 20—30 Н и удельный импульс 20—30 км/с при КПД 30 % и более. В 1975 подобный РД испытан в СССР на ИСЗ «Космос-728» (РД электрической мощностью 3 кВт, работающий на калии, развил удельный импульс

Кроме России и США исследованиями и разработкой ЭРД занимаются также в Великобритании, ФРГ, Франции, Японии, Италии. Основные направления деятельности этих стран: ИД (наиболее успешны разработки Великобритании и Германии, особенно — совместные); СПД и ДАС (Япония, Франция); ЭТД (Франция). В основном эти двигатели предназначены для ИСЗ.

Альтернативные системы

Space copter engine

Также проводятся частные разработки, такие как проект Space copter engine, в котором рассматривается возможность создания подъемной силы, за счет вращающегося вокруг своей оси кольца с линейной скоростью обода равной первой космической скорости. —Rosankevich 10:17, 3 апреля 2009 (UTC)

Читайте также:  Какое автомобильное масло самое лучшее для дизельных двигателей

Источник

Электрический ракетный двигатель (электроракетный двигатель)

Электрический ракетный двигатель (электроракетный двигатель).

Электрический ракетный двигатель (электроракетный двигатель) – ракетный двигатель , принцип работы которого основан на преобразовании электрической энергии в направленную кинетическую энергию частиц.

Электроракетный двигатель, сущность, устройство, принцип работы:

Электрический ракетный двигатель (электроракетный двигатель, ЭРД) – ракетный двигатель , принцип работы которого основан на преобразовании электрической энергии в направленную кинетическую энергию частиц. В таких двигателях в качестве источника энергии для создания тяги используется электрическая энергия бортовой энергоустановки космического аппарата.

По физике процессов электрический ракетный двигатель отличается от других разновидностей ракетных двигателей – от жидкостных и твердотопливных. Последние два используют химическую энергию.

Как и в обычном химическом ракетном двигателе в ЭРД также присутствует рабочее тело, которым выступает, как правило, газ (аргон, ксенон, аммиак, азот, гидразин и т.п.), иногда – жидкость, смеси жидкости и газа, жидкие металлы, пары металлов и твердые вещества (например, фторопласт), а также их смеси. Рабочее тело также истекает из сопла двигателя и создает тягу. В отличие от химического ракетного двигателя скорость истечения потока рабочего тела в ЭРД имеет высокое значение и составляет от 3 км/с и более. При этом верхняя граница скорости истечения частиц газа или другого рабочего тела неограниченна и по предварительным оценкам составляет порядка 210 км/с. Электрическая мощность ЭРД колеблется от сотен ватт до мегаватт . В настоящее время для электрических ракетных двигателей различных типов характерны следующие скорости истечения рабочего тела – от 10 до 60 км/с, электрическая мощность – от 0,8 до 7 КВт. КПД таких двигателей составляет порядка от 30 до 60%. Сам газ – рабочее тело (если в качестве рабочего тела используется газ) хранится в жидком виде.

В отличии от химическим двигателей электрические ракетные двигатели имеют исключительно высокий удельный импульс, составляющий до 100 км/с и более. Однако большой потребный расход энергии (1-100 кВт/Н тяги) и малое отношение тяги к площади поперечного сечения реактивной струи (не более 100 кН/м2) ограничивают максимальную целесообразную тягу ЭРД несколькими десятками ньютон . Недостатком электрических ракетных двигателей также является малое ускорение космического аппарата, которое составляет десятые или даже сотые доли ускорения свободного падения (g), что ограничивает применение таких двигателей только космическим пространством. Поэтому для запуска космического аппарата с Земли к другим планетам необходимо комбинировать обычные химические ракетные двигатели с электрическими.

Для ЭРД характерны малые размеры – порядка 0,1 м и более, а также масса порядка нескольких кг .

История возникновения электрических ракетных двигателей:

Впервые идею использования электрической энергии высказывал К.Э. Циолковский в 1912 г. еще в начале развития ракетной техники. В статье «Исследование мировых пространств реактивными приборами» (Вестник воздухоплавания, №9, 1912 г.) он писал: «… с помощью электричества можно будет придавать громадную скорость выбрасываемым из реактивного прибора частицам…».

В 1916-1917 гг. Р. Годдард экспериментально подтвердил реальность осуществления этой идеи.

В 1929-1933 гг. под руководством В. П. Глушко был создан один из первых действующих электрических ракетных двигателей . Впоследствии на некоторое время работы по разработке ЭРД были прекращены.

Читайте также:  Какие двигатели ставят на ниссанах атлас

Они возобновились только в конце 1950-х – начале 1960-х гг. и уже к началу 1980-х гг. в СССР и США испытано около 50 различных конструкций электрических ракетных двигателей в составе космических аппаратов и высотных атмосферных зондов.

В настоящее время ЭРД широко используются в космических аппаратах: как в спутниках, так и в межпланетных космических аппаратах.

Классификация, типы и виды электрических ракетных двигателей:

По принципу действия ЭРД подразделяются на три большие группы:

– электротермические (электронагревные) ракетные двигатели ,

каждая из которых объединяет в себя несколько видов.

Для каждого типа и вида двигателя используется определенное рабочее тело: газ, жидкость или твердое вещество.

В электротермическом ракетном двигателе электрическая энергия служит для нагрева рабочего тела – газа до температуры 1000-5000 К. Газ, истекая из реактивного сопла (аналогичного соплу химического ракетного двигателя ), создаёт тягу. В таком двигателе термическая энергия струи газа преобразуется в кинетическую энергию струи в сопле двигателя. Обычно используется сопло Лаваля, позволяющее ускорить газ до сверхзвуковых скоростей.

Электротермические ракетные двигатели подразделяются на следующие виды: омические, электродуговые, индукционные и электровзрывные.

В электростатическом ракетном двигателе ускорение одноимённо заряженных частиц рабочего тела – газа, паров металла, жидкости или твердого вещества осуществляется в электростатическом поле, которые истекая из сопла, создают тягу.

По виду ускоряемых частиц различают ионные и коллоидные ракетные двигатели.

В ионном двигателе заряженными частицами выступают положительно заряженные ионы. В коллоидном двигателе – положительно заряженные микроскопические (размером в доли микрометров) «коллоидные» частицы (капли, пылинки и т.д.), которые по размерам и массе на 4-6 порядков превышают ионы. Рабочим телом в коллоидных двигателях выступают жидкие легкоплавкие металлы ( галлий , цезий , висмут и пр.) и их соединения.

В электромагнитном ракетном двигателе (также именуемый плазменный ракетный двигатель) тяга создается за счёт разгона в электромагнитном поле под действием силы Ампера рабочего тела – газа, жидкости, жидкого металла или твердого вещества (например, фторопласта), превращённого в плазму. Сила Ампера возникает в результате взаимодействия протекающего по плазме электрического тока с магнитным полем. Плазма в двигателе обычно формируется путём термической ионизации рабочего тела при пропускании его через зону горения электрической дуги (дугового разряда). Содержание ионов в газе быстро возрастает с повышением температуры и понижением давления.

По режиму работы различают стационарные и импульсные электромагнитные ракетные двигатели.

Стационарные электромагнитные ракетные двигатели работают непрерывно. Их разновидностями являются холловские двигатели ( двигатели на основе эффекта Холла ) и МГД-двигатели.

Импульсные электромагнитные ракетные двигатели работают в режиме кратковременных импульсов длительностью от нескольких микросекунд до нескольких миллисекунд. Варьируя частоту включений двигателя и длительность импульсов, можно получать любые необходимые значения суммарного импульса тяги.

Разновидностями импульсных электромагнитных ракетных двигателей являются пинчевые двигатели, двигатели с бегущей волной, коаксильные и линейные (шинные, рельсовые) двигатели.

На базе указанных основных типов (классов) ЭРД создаются различные промежуточные и комбинированные варианты, в наибольшей степени отвечающих конкретным условиям использования.

© Фото https://www.pexels.com, https://pixabay.com

электроракетный двигатель принцип работы петухов для самолета
устройство электроракетного двигателя
международная конференция по электроракетным двигателям
космические ядерные энергоустановки и электроракетные двигатели
электрические ракетные двигатели космических аппаратов эрд
электрический ракетный двигатель принцип работы своими руками

Источник

Adblock
detector