Электронный запуск асинхронного двигателя

Подключение асинхронного электродвигателя прямого пуска: пошаговая инструкция!

Каждый день нас окружает огромное количество электроприборов. Конструкция значительной части этих приборов включает в себя электродвигатели . Сегодня мы расскажем, как подключить асинхронный электродвигатель прямого пуска.

ВАЖНО! Электромонтажные работы следует проводить только с полным соблюдением требований техники безопасности .

Для выполнения прямого (нереверсивного) пуска асинхронного электродвигателя с местным управлением используется следующее оборудование:

автоматический выключатель защиты двигателя , который на схеме имеет обозначение QF1;
контактор (магнитный пускатель) с дополнительным нормально открытым контактом – на схеме КМ1;
автоматический выключатель для защиты цепи управления – обозначение на схеме SF1;
кнопка с нормально открытым контактом зеленого цвета с шильдиком «ПУСК» – обозначение на схеме SB2;
кнопка с нормально замкнутым контактом красного цвета с шильдиком «СТОП» – обозначение на схеме SB1.

В первую очередь необходимо выполнить подключение силовой части . Для этого отмеряем необходимую длину провода типа ПуВ и производим подключение контактора к автоматическому выключателю защиты двигателя в соответствии со схемой :

• клемма «2» автоматического выключателя защиты двигателя — клемма «1» контактора;
• клемма «4» автоматического выключателя — клемма «3» контактора;
• клемма «6» автоматического выключателя — клемма «5» контактора.

Затем переходим к подключению цепи управления . Для этого отмеряем необходимую длину провода типа ПуВ и производим подключение по схеме :

• клемма «1» контактора — клемма «1» автоматического выключателя для защиты цепи управления;
• клемма «2» автоматического выключателя — клемма «11» кнопки «СТОП»;
• клемма «12» кнопки «СТОП» — клемма «13» кнопки «ПУСК», а также клемма «13» дополнительного контакта контактора;
• клемма «14» кнопки «ПУСК» и клемма «14» контактора — клемма катушки контактора «А1»;
• клемма катушки контактора «А2» — клемма «3» контактора.

Выполнив подключение магнитного пускателя, подключаем сетевой питающий кабель типа ВВГнг . Зачищаем и маркируем жилы:

• жила серого цвета – маркировка «L1»;
• коричневая жила – «L2»;
• черная жила – «L3».

После этого производим подключение кабеля к клеммам автоматического выключателя защиты двигателя в следующей последовательности :

• жила с маркировкой «L1» — клемма «1»;
• жила с маркировкой «L2» — клемма «3»;
• жила с маркировкой « L3» — клемма «5»;
• жилу желто-зеленого цвета подключаем к свободной клемме шины заземления (как правило, обозначается знаком ).

Затем выполняем подключение кабеля типа ВВГнг для питания электродвигателя. Также зачищаем и маркируем жилы следующим образом:

• жила серого цвета – маркировка «L1»;
• коричневая жила – «L2»;
• черная жила – «L3».

Далее осуществляем подключение кабеля к нижним клеммам контактора:

Читайте также:  Характеристика двигателя прямой привод

• жила с маркировкой «L1» — клемма «2»;
• жила с маркировкой « L2» — клемма «4»;
• жила с маркировкой «L3» — клемма «6»;
• а жилу желто-зеленого цвета подключаем к свободной клемме шины заземления.

После этого заводим кабель типа ВВГнг для питания электродвигателя в клеммную коробку . Зачищаем и маркируем жилы:

• жила серого цвета – маркировка «L1»;
• коричневая жила – «L2»;
• черная жила – «L3».

Затем устанавливаем наконечники и производим подключение :

• жила с маркировкой «L1» — клемма «U1»;
• жила с маркировкой «L2» — клемма «V1»;
• жила с маркировкой «L3» — клемма «W1».;
• жилу желто-зеленого цвета подключаем к соответствующему болтовому соединению заземления.

Далее устанавливаем перемычки «звезда» или «треугольник» исходя из необходимого питающего напряжения.

Наглядно ознакомиться с тем, как выполняется нереверсивное подключение асинхронного электродвигателя с местным управлением можно в видео, которое размещено на нашем YouTube-канале https://youtu.be/ornvYjkv0Cs .

Оригинал статьи размещен на нашем сайте cable.ru .

Если этот материал был для Вас полезным, поделитесь им в социальных сетях!

А для того, чтобы не пропустить выход новых статей, ставьте «лайк» и подписывайтесь на наш канал: Кабель.РФ: всё об электрике .

Источник

Трехфазный двигатель в однофазной сети без конденсаторного запуска

В статье собраны советы, как можно подключить такой электродвигатель в однофазную сеть без использования конденсаторной батареи или частотного преобразователя за счет импульса тока от электронного ключа. Они дополняются схемами и видеороликом.

Принцип работы электронного ключа

Если собрать обмотки асинхронного электродвигателя по схеме треугольника и подключить к напряжению однофазной сети 220 вольт, то через них станут протекать одинаковые токи, как показано на графике ниже.

Угловое смещение любой обмотки относительно других составляет 120 градусов. Поэтому магнитные поля от каждой из них будут складываться, устранять взаимное влияние.

Создаваемое результирующее магнитное поле статора не будет оказывать влияние на ротор: он останется в состоянии покоя.

Чтобы электродвигатель начал вращение необходимо через его обмотки пропустить сдвинутые на 120° токи, как это делается в нормальной трехфазной системе питания или за счет подключения частотного преобразователя. Тогда двигатель станет вырабатывать мощность с минимальными потерями, обладая наибольшим КПД.

Широко распространённые промышленные схемы запуска трехфазного двигателя в однофазной сети позволяет ему работать, но с меньшим КПД и большими потерями, что, чаще всего, вполне допустимо.

Альтернативными методами являются:

  1. Механическая раскрутка ротора, например, за счет ручной намотки шнура на вал и резкого его прокручивания рывком при поданном напряжении;
  2. Сдвиг фаз токов за счет кратковременного использования электронного ключа, коммутирующего электрическое сопротивление одной обмотки.

Поскольку первый способ «намотал и дернул» не вызывает трудностей, то сразу анализируем второй.

На верхней схеме показан подключенный параллельно обмотке B электронный ключ «k». Это довольно условное обозначение принято для объяснения принципа работы электродвигателя за счет формирования токового импульса.

Как запускается двигатель

Обмотки статора подключены по схеме треугольника. На одну из них (A) подается напряжение 220 вольт. Параллельно ей подключена еще одна цепочка из двух последовательных обмоток (B+C).

Читайте также:  Как использовать двигатель hdd

По закону Ома напряжение сети создает в них токи. Их величина зависит от сопротивления. Все обмотки одинаковы. Поэтому в (A) ток больше, а (B+C) в 2 раза меньше по величине. Причем по фазе они совпадают. При такой ситуации они не способны создать вращающееся магнитное поле, достаточное для запуска ротора.

Параллельно обмотке (B) подключена электронная схема, обозначенная как ключ K. Он находится в разомкнутом состоянии, но кратковременно замыкается в момент достижения максимального напряжения на обмотке С.

Электронный ключ закорачивает обмотку В и падение напряжения на обмотке С скачком возрастает в два раза, что в итоге и обеспечивает сдвиг фаз токов в обмотках А и С. Важно отметить, что ток в обмотках (А) и (В+С) в этот момент равен нулю.

Угол сдвига фаз φ, необходимый для запуска двигателя, достаточно выдержать в интервале 50÷70°, хотя идеальный вариант — 120.

Конструкция фазосдвигающего электронного ключа может собираться из разных деталей. Наиболее подходящие устройства для бытовых целей по мере их сложности представлены ниже.

Схема запуска электродвигателя до 2 кВт

Ее описание можно найти в №6 журнала Радио за 1996 год. Автор статьи В Голик предлагает конструкцию двунаправленного (положительной и отрицательной полугармоник) электронного ключа на двух диодах и тиристорах с управлением транзисторным блоком.

Описание технологии

Силовые диоды VD1 и VD2 совместно с тиристорами VS1, VS2 образуют мост, который управляется прямым и обратным биполярными транзисторами. Положение подстроечного резистора R7 влияет на напряжение открытия VT1, VT2.

Срабатывание транзисторного ключа обеспечивает кратковременный сдвиг фаз токов в обмотках и создание вращающегося магнитногого поля, раскручивающего ротор.

Благодаря приложенному моменту магнитных сил к ротору, последний начинает вращение. Его энергия постоянно пополняется на каждой полуволне очередным импульсом.

Особенности монтажа

Автор выполнил электронный ключ на стеклопластиковой плате и поместил его в изолированный корпус с возможностью подключения входных и выходных цепей через контактные выводы. Вариант исполнения схемы навесным монтажом тоже имеет право на реализацию.

Для работы электродвигателей небольших мощностей допустимо силовые диоды и тиристоры размещать без радиаторов. Но обеспечить хороший теплоотвод с них и надежную работу лучше заранее, включив эти элементы в конструкцию электронного ключа.

Номиналы электронных компонентов указаны прямо на схеме.

С целью обеспечения безопасности следует хорошо выполнить изоляцию корпуса электронного блока, исключить случайное прикосновение к его деталям во время работы: они все находятся под напряжением 220 вольт.

Принципы наладки

Ползунок резистора R7 «Режим» имеет два крайних положения:

  1. минимального;
  2. и максимального сопротивления.

В первом случае электронный ключ открыт и создает максимальный импульс сдвига тока в обмотке, а во втором — закрыт: вращение ротора исключено.

Запуск трехфазного двигателя осуществляют на максимально допустимом сдвиге фазы тока внутри обмотки. Затем положением R7 выставляют его рабочие обороты и мощность.

Проверенные модели

Автор опробовал схему на двигателях с:

  1. числом оборотов 1360 и мощностью 370 ватт (АААМ63В4СУ1);
  2. 1380 об/мин, 2 кВт.
Читайте также:  Сколько весит двигатель ом 616

Результаты экспериментов его устроили.

Вместо рекомендованных силовых диодов и тиристоров можно использовать любые другие полупроводниковые элементы. Но, следует обращать внимание на их рабочий ток не менее 10 ампер и обратное напряжение от 300 вольт.

Две схемы на симисторах

Следующие 2 конструкции электронного ключа описал В Бурлако в 1999 году. Они опубликованы в журнале Сигнал №4.

Запуск легкого электродвигателя

Устройство разработано для двигателей с мощностью до 2,2 кВт, имеет минимальный набор электронных деталей.

Конденсатор С, обладая емкостным сопротивлением, под действием приложенного к его пластинам напряжения, сдвигает вектор тока вперед на 90 градусов, направляя его на управление динистором VS2.

Разность потенциалов на конденсаторе регулируется суммарным сопротивлением R1, R2. Импульс динистора поступает на управляющий электрод симистора VS1, который вбрасывает ток в обмотку электродвигателя.

Схема пуска двигателя под нагрузкой

Для станков и механизмов, создающих большое противодействие раскрутке ротора, можно порекомендовать переключить обмотки на схему разомкнутой звезды с созданием двух раскручивающих моментов.

Полярность обмоток двигателя указана точками на схеме. Фазосдвигающие цепочки импульсов тока работают по той же технологи, что и в предыдущих случаях. Номиналы электрических деталей проставлены рядом с их графическими обозначениями.

Особенности наладки

Автор Бурлако подавал напряжение на двигатель трехфазным пускателем SG1 марки ПНВС-10, которым комплектовались старые активаторные стиральные машины.

Все три контакта этого пускателя при нажатии на кнопку «Пуск» замыкаются одновременно, а при отпускании:

  • два крайних остаются в замкнутом состоянии;
  • средний — разрывается, отключая цепь пусковой обмотки.

Через этот средний контакт в обеих схемах подается импульс тока. Схема работает только на время, необходимое для раскрутки двигателя, после чего выводится из работы, отключается от питающего напряжения.

Момент запуска двигателя в каждой схеме подбирают после подачи напряжения изменением сопротивления R2. При этом в треугольнике до момента раскрутки ротора проходят большие токи, вызывающие сильные вибрации конструкции. Для их уменьшения рекомендуется подбирать фазосдвигающий импульс ступенями, а не плавно.

При оптимальном положении R2 двигатель запускается без вибраций.

Для двигателей небольшой мощности можно осуществлять монтаж симисторов без радиаторов охлаждения, но последние все же повышают надежность схемы.

Мое мнение о методе

Рекомендую обратить внимание на следующий вывод.

В трех рассмотренных схемах ток рабочего режима протекает по всем подключенным обмоткам. Полное расходование приложенной энергии тратится не рентабельно. Только около 30% ее мощности создает вращение ротора. Остальная часть порядка 70% — безвозвратные потери.

Если кого-то устраивает запуск трехфазного двигателя в однофазной сети по этой схеме, то это ваш выбор. Я же сделал обзор этих схем, чтобы показать их положительные и отрицательные стороны, не навязывая собственное мнение.

Этой темой стали массово пользоваться создатели видеороликов на Ютубе, набирая количество просмотров и подписчиков, как ЮКА ЛАХТ, в своем видео «Без конденсаторный запуск трехфазного двигателя».

Делайте выбор осознанно, а если остались вопросы по теме, то сейчас вам удобно задать их в комментариях.

Источник

Adblock
detector