Электронная система управления температурой двигателя

Электронная система управления двигателем (ЭСУД)

Так уж сложилось, что прогресс никогда не стоит на месте. И в погоне за лучшими показателями экономичности и мощности двигателей внутреннего сгорания (ДВС), автомобильным инженерам приходится придумывать новые системы, которые смогли бы оптимизировать работу двигателя до необходимых значений. Не забывая при всем при этом, укладываться в современные нормы токсичности отработавших газов.

Назначение систем управления двигателем

Если выразиться проще, то главным условием для лучшей работы двигателя, является точное дозирование топливовоздушной смеси, в зависимости от условий работы двигателя. То есть, в нужный момент времени при работе двигателя, необходимо подать точное количество топлива вместе с воздухом и в нужный момент воспламенить его, для получения хороших показателей мощности, топливной экономичности и норм токсичности. Этот момент, является основополагающим при совершенствовании систем управления двигателем.

В прошлом веке, автопроизводители в основном совершенствовали эти системы механическим путем. Пытались модернизировать систему зажигания, поплавковыми камерами карбюраторов регулировали подачу топлива, но все эти попытки оказались тщетны.

Единственно правильным путем оптимизации работы двигателя было создание электронной системы управления двигателем (ЭСУД). Эту систему сейчас используют абсолютно на всех современных автомобилях.

ЭСУД состоит из датчиков, электронного блока управления (ЭБУ), и исполнительных механизмов. То есть ЭСУД нельзя назвать просто компьютером или как его еще называют “инжектором”, так как это в первую очередь система, в которой каждый участник выполняет свою определенную роль.

ЭСУД на разных автомобилях могут отличаться друг от друга, по типу работы датчиков, либо исполнительных механизмов. Но суть всегда остается одной, ЭБУ собирает информацию со всех датчиков о текущем состоянии работы двигателя(положение коленчатого вала, положение и скорость открытия дроссельной заслонки и т.д.), в том числе о намерениях водителя, после чего на основе своего программного обеспечения создает управляющий сигнал на исполнительные механизмы (на топливные форсунки, электробензонасос (ЭБН), регулятор холостого хода (РХХ) и т.д.).

Из чего состоит система управления двигателем

Рассмотрим вкратце каждый датчик:

Датчик положения коленчатого вала (ДПКВ) – является одним из основных датчиков, ЭБУ с его помощью синхронизирует положение коленчатого вала и распределительных валов двигателя. При его неисправности автомобиль либо вообще не заводится, либо на некоторых марках автомобилей заводится, но работает в аварийном режиме и соответственно автомобиль не развивает своей полной мощности.

Датчик положения распределительного вала (ДПРВ) – используется для определения положения распределительного вала, соответственно так же как и ДПКВ, участвует в синхронизации коленчатого вала и распределительного вала. Нужен для осуществления фазированного впрыска.

Датчик положения дроссельной заслонки (ДПДЗ) — отслеживает угловое положение дроссельной заслонки и преобразует его в сигнал постоянного напряжения. Используется для стабилизации всех режимов работы двигателя, от холостого хода до полной нагрузки.

Датчик кислорода (ДК) — определяет количество кислорода в выхлопных газах, после чего ЭБУ корректирует подачу топлива пытаясь достичь стехиометрической смеси.

Датчик массового расхода воздуха (ДМРВ) — один из основных датчиков, измеряет количество воздуха которое попадает в двигатель. На основе этого параметра определяется необходимое количество топлива для соответствующего режима работы двигателя.

Датчик положения педали сцепления — его основная функция заключается в том, что он снижает рывки при переключении передач.

Датчик положения педали тормоза — используется для переключения режимов АКПП и для системы ABS.

Датчик абсолютного давления во впускном коллекторе (ДАД либо MAP) – как правило используется либо он, либо ДМРВ. Назначение у них одинаковое, отличие в принципе работы. МАР измеряет величину разрежения во впускном коллекторе, и на основе этого ЭБУ делает выводы о расходе воздуха в двигателе.

Читайте также:  Какие документы нужны при замене двигателя на ваз

Датчик детонации – определяет в двигателе детонацию, и смещает при необходимости угол опережения зажигания в более раннюю сторону, т.е. искра на контактах свечи зажигания появляется немного раньше во избежание детонации.

Из исполнительных механизмов стоит отметить:

Регулятор холостого хода (РХХ) – здесь название говорит само за себя, регулирует холостой ход при закрытой дроссельной заслонке.

Топливные форсунки – в момент подачи электрического сигнала от ЭБУ, подают топливо в двигатель.

Катушка зажигания – также в необходимый момент принимает электрический сигнал от ЭБУ, и подает электрический разряд высокого напряжения на свечи зажигания.

Клапан фазорегулятора – на определенных режимах работы двигателя, получает сигнал на смещение шестерни распределительного вала, для получения более высоких показателей мощности двигателя.

Электронный дроссельный узел – применяется в паре с электронной педалью акселератора , в котором присутствует электрический мотор изменяющий угол открытия дроссельной заслонки, при его наличии отсутствуют такие компоненты как РХХ и ДПДЗ, так как они встроены в данный узел.

Ну и наконец, электронный блок управления (ЭБУ) – это так называемые “мозги” системы управления двигателем, именно он определяет какое количество топлива подать в цилиндры двигателя, в определенный момент времени.

Это конечно же не полный список по всем компонентам системы управления двигателем, но наличие каждой из этих деталей является важным условием правильной работы двигателя, более подробно мы их рассмотрим в отдельных статьях.

Источник

Система охлаждения двигателя с электронным регулированием

На параметры работы двигателя, среди прочего, существенно влияет оптимальный температурный режим охлаждающей жидкости. Повышенная температура охлаждающей жидкости при частичной нагрузке обеспечивает благоприятные условия для работы двигателя, что положительно влияет на расход топлива и токсичность отработавших газов. Благодаря пониженной температуре охлаждающей жидкости при полной нагрузке мощность двигателя увеличивается, вследствие охлаждения всасываемого воздуха и тем самым увеличения его количества, поступающего в двигатель.

Применение системы охлаждения с электронным регулированием температуры позволяет регулировать температуру жидкости при частичной нагрузке двигателя в пределах от 95 до 110°C и при полной нагрузке – от 85 до 95°C.

Система охлаждения двигателя с электронным регулированием оптимизирует температуру охлаждающей жидкости в соответствии с нагрузкой двигателя. Согласно программе оптимизации, заложенной в память блока управления двигателем, посредством действия термостата и вентиляторов достигается требуемая рабочая температура двигателя. Таким образом, температура охлаждающей жидкости приведена в соответствие с нагрузкой двигателя.

Схематично система охлаждения с электронным управлением показана на рисунке.

Рис. Система охлаждения с электронным управлением:
1 – расширительный бачок; 2 – радиатор системы отопления; 3 – клапан отключения радиатора системы отопления; 4 – распределитель охлаждающей жидкости с электронным термостатом; 5 – масляный радиатор коробки передач; 6 – датчик температуры охлаждающей жидкости (на выходе жидкости из двигателя); 7 – датчик температуры охлаждающей жидкости (на выходе жидкости из радиатора); 8 – масляный радиатор; 9 – вентиляторы; 10 – основной радиатор системы охлаждения; 11 – жидкостный насос

Основными отличительными составляющими системы охлаждения с электронным регулированием от обычной является наличие распределителя охлаждающей жидкости с электронным термостатом. В связи с введением электронного регулирования системы охлаждения в блок управления двигателем поступает следующая дополнительная информация:

  • электропитание термостата (выходной сигнал)
  • температура охлаждающей жидкости на выходе из радиатора (входной сигнал)
  • управление вентиляторами радиатора (2 выходных сигнала)
  • положение потенциометра у регулятора системы отопления (входной сигнал)

Распределитель представляет собой устройство для направления потока охлаждающей жидкости в малый или большой круг.

Рис. Принципиальная схема работы распределителя охлаждающей жидкости с электронным термостатом:
1 – поток жидкости от основного радиатора; 2 – зона отстоя охлаждающей жидкости при закрытой клапанной тарелке; 3 – большая клапанная тарелка; 4 – поток жидкости от двигателя; 5 – поток жидкости от системы отопления; 6 – поток жидкости от масляного радиатора; 7 – поток жидкости от жидкостного насоса; 8 – малая клапанная тарелка; 9 – электронный термостат; а – циркуляция жидкости по малому кругу; б – циркуляция жидкости по большому кругу

В термостате в отличие от обычных систем охлаждения установлен дополнительное нагревательное сопротивление 3.

Рис. Электронный термостат:
1 – штифт; 2 – наполнитель; 3 – дополнительное сопротивление

При нагревании охлаждающей жидкости наполнитель 2 разжижается и расширяется, что ведет к подъему штифта 1. Когда к нагревательному сопротивлению не поступает ток, термостат действует как традиционный, однако температура его срабатывания повышена и составляет 110°C (температура охлаждающей жидкости на выходе из двигателя). В наполнитель встроено нагревательное сопротивление 3. Когда на него подается ток, оно нагревает наполнитель 2, который при этом расширяется, в результате чего штифт выдвигается на определенную величину «x» в зависимости от степени нагрева наполнителя. Штифт 1 теперь перемещается не только под действием нагретой охлаждающей жидкости, но и под действием нагревания сопротивления, а степень его нагревания определяет блок управления двигателем в соответствии с заложенной в него программой оптимизации температуры охлаждающей жидкости. В зависимости от характера импульса и времени его подачи изменяется степень нагревания наполнителя.

Читайте также:  Что означает чиповать двигатель

Распределитель размещен вместо подсоединительных штуцеров у головки блока цилиндров и представляет собой устройство для направления потока охлаждающей жидкости в малый или большой круг.

Малый круг служит для быстрого прогрева двигателя после запуска холодного двигателя. Система оптимизации температуры охлаждающей жидкости при этом не работает. Термостат в распределительной коробке препятствует выходу охлаждающей жидкости из двигателя и открывает кратчайший путь к насосу. Радиатор не включен в круг циркуляции охлаждающей жидкости. Охлаждающая жидкость циркулирует по малому кругу. Положение клапанных тарелок таково, что возможно движение охлаждающей жидкости только к насосу. Охлаждающая жидкость нагревается очень быстро, чему способствует циркуляция ее только по малому кругу.

Теплообменник системы отопления и масляный радиатор включены в малый круг.

Ход охлаждающей жидкости в большой круг открывается или посредством термостата в регуляторе по достижению температуры примерно 110°C, или в соответствии с нагрузкой двигателя по программе оптимизации температуры охлаждающей жидкости, заложенной в блок управления двигателем.

При полной нагрузке двигателя требуется интенсивное охлаждение охлаждающей жидкости. На термостат в распределителе поступает ток, и открывается путь для жидкости из радиатора. Одновременно посредством механической связи малая клапанная тарелка перекрывает путь к насосу в малом круге.

Насос подает охлаждающую жидкость, выходящую из головки блока непосредственно к радиатору. Охлажденная жидкость из радиатора поступает в нижнюю часть блока двигателя и оттуда засасывается насосом.

Возможна также комбинированная циркуляция охлаждающей жидкости. Одна часть жидкости проходит по малому кругу, другая – по большому.

Управление термостатом в оптимизированной системе охлаждения двигателя (движение охлаждающей жидкости по малому или большому кругу) осуществляется в соответствии с трехмерными графиками зависимости оптимальной температуры охлаждающей жидкости от ряда факторов, основными из которых являются нагрузка двигателя, частота вращения коленчатого вала, скорость движения автомобиля и температура всасываемого воздуха. По этим графикам определяется величина номинальной температуры охлаждающей жидкости.

Термостат срабатывает лишь тогда, когда фактическая величина температуры охлаждающей жидкости выходит за пределы поля допуска номинальной величины температуры, что и обеспечивает постоянство нахождения фактической температуры в поле допуска номинальной температуры.

Читайте также:  Как снять радиатор на газели 402 двигатель

Фактические значения температуры охлаждающей жидкости снимаются с двух различных мест контура системы охлаждения и передаются в блок управления двигателем в виде сигналов по напряжению. Датчики температуры охлаждающей жидкости на выходе из двигателя и на выходе охлаждающей жидкости из двигателя в распределителе работают как датчики с отрицательным температурным коэффициентом. Номинальные величины температуры охлаждающей жидкости заложены в память блока управления двигателем в качестве графических зависимостей.

При эксплуатации двигателя в странах с суровым климатом может применяться дополнительный электроподогрев для повышения температуры охлаждающей жидкости. Дополнительный подогрев состоит из трех свечей накаливания. Они встроены в месте подсоединения магистрали охлаждающей жидкости к головке блока. По сигналу от блока управления реле включает малый или большой подогрев. В зависимости от резерва по току генератора включаются одна, две или три свечи накаливания для подогрева охлаждающей жидкости.

Источник

Неприятные сюрпризы от ДТОЖ двигателя.

Привет. Сегодня хочу рассказать о датчике температуры охлаждающей жидкости и неисправностях связанных с ним.ТОЖ. Картинка из свободного доступа интернета.

Краткая справка .Датчик температуры охлаждающей жидкости(ДТОЖ) — это важный элемент электронной системы управления двигателем(ЭСУД). Датчик предназначен для измерения температуры двигателя. По сигналу с этого датчика ЭСУД ,по заложенной в нем программе, управляет подачей топлива, корректирует угол зажигания, включает и выключает вентилятор системы охлаждения двигателем.

Конструктивно датчик представляет собой термистор, который имеет отрицательный температурный коэффициент, т. е. с увеличением температуры его сопротивление падает. Сам термистор помещен в в теплопроводный корпус с резьбой. В корпус встроен пластиковый разъем с 2-я выводами термистора.

Датчик должен иметь прямой контакт с охлаждающей жидкостью.

На самом деле этот, на первый взгляд, простой датчик может автовладельцу принести массу неприятных моментов.

Симптомы неисправности этого датчика могут быть следующие:

  • дергания и рывки при движении автомобиля;
  • повышенный расход топлива(черный нагар на свечах зажигания);
  • повышенные обороты на холостом ходу;
  • плохой запуск на горячую ,в некоторых случаях и на холодную;
  • перегрев двигателя из-за неверных значений ДТОЖ.

Самые банальные причины: обрыв внутри ДТОЖ или проводов,подходящих к нему. В этом случае загорается лампа неисправности двигателя, ошибка:»Неисправность цепи датчика температуры двигателя».

Но есть и более коварные причины: ДТОЖ может давать неверные показания по температуре охлаждающей жидкости, т.е показывать температуру ниже чем она есть на самом деле. К примеру, может занижать температуру на 10-15 градусов. В этом случае лампа неисправности не загорается. ЭСУД не подает вовремя сигнал на реле вентилятора системы охлаждения двигателя. Начинает подниматься в бачке уровень охлаждающей жидкости, что может привести к перегреву двигателя. В этом случае реальную температуру показать может только указатель на приборном щитке. В таком случае можно снять ДТОЖ ,нагреть его отдельно в чайнике и замерить тестером как меняется его сопротивление по таблице.

Но лучше купить новый, благо эти датчики недорогие.

Следующая проблема-это плохой запуск на холодном двигателе. В этом случае ошибка тоже не загорается. Датчик температуры, наоборот, показывает завышенную температуру. К примеру, на улице температура -10 градусов, а датчик показывает +25 градусов. При такой разнице двигатель может совсем не запуститься. Для запуска ему просто не хватает подачи топлива. Много раз такие автомобили притаскивали на тросу. При подключении сканера все становится понятно.

Надеюсь статья будет полезна диагностам и автолюбителям.

Буду благодарен, если подпишитесь на канал и оцените статью «Лайком» . Если возникнут вопросы — пишите в комментариях, постараюсь на них ответить.

Источник

Adblock
detector