Электронная схема дизельного двигателя

Электронная система управления двигателем (ЭСУД)

Так уж сложилось, что прогресс никогда не стоит на месте. И в погоне за лучшими показателями экономичности и мощности двигателей внутреннего сгорания (ДВС), автомобильным инженерам приходится придумывать новые системы, которые смогли бы оптимизировать работу двигателя до необходимых значений. Не забывая при всем при этом, укладываться в современные нормы токсичности отработавших газов.

Назначение систем управления двигателем

Если выразиться проще, то главным условием для лучшей работы двигателя, является точное дозирование топливовоздушной смеси, в зависимости от условий работы двигателя. То есть, в нужный момент времени при работе двигателя, необходимо подать точное количество топлива вместе с воздухом и в нужный момент воспламенить его, для получения хороших показателей мощности, топливной экономичности и норм токсичности. Этот момент, является основополагающим при совершенствовании систем управления двигателем.

В прошлом веке, автопроизводители в основном совершенствовали эти системы механическим путем. Пытались модернизировать систему зажигания, поплавковыми камерами карбюраторов регулировали подачу топлива, но все эти попытки оказались тщетны.

Единственно правильным путем оптимизации работы двигателя было создание электронной системы управления двигателем (ЭСУД). Эту систему сейчас используют абсолютно на всех современных автомобилях.

ЭСУД состоит из датчиков, электронного блока управления (ЭБУ), и исполнительных механизмов. То есть ЭСУД нельзя назвать просто компьютером или как его еще называют “инжектором”, так как это в первую очередь система, в которой каждый участник выполняет свою определенную роль.

ЭСУД на разных автомобилях могут отличаться друг от друга, по типу работы датчиков, либо исполнительных механизмов. Но суть всегда остается одной, ЭБУ собирает информацию со всех датчиков о текущем состоянии работы двигателя(положение коленчатого вала, положение и скорость открытия дроссельной заслонки и т.д.), в том числе о намерениях водителя, после чего на основе своего программного обеспечения создает управляющий сигнал на исполнительные механизмы (на топливные форсунки, электробензонасос (ЭБН), регулятор холостого хода (РХХ) и т.д.).

Из чего состоит система управления двигателем

Рассмотрим вкратце каждый датчик:

Датчик положения коленчатого вала (ДПКВ) – является одним из основных датчиков, ЭБУ с его помощью синхронизирует положение коленчатого вала и распределительных валов двигателя. При его неисправности автомобиль либо вообще не заводится, либо на некоторых марках автомобилей заводится, но работает в аварийном режиме и соответственно автомобиль не развивает своей полной мощности.

Датчик положения распределительного вала (ДПРВ) – используется для определения положения распределительного вала, соответственно так же как и ДПКВ, участвует в синхронизации коленчатого вала и распределительного вала. Нужен для осуществления фазированного впрыска.

Датчик положения дроссельной заслонки (ДПДЗ) — отслеживает угловое положение дроссельной заслонки и преобразует его в сигнал постоянного напряжения. Используется для стабилизации всех режимов работы двигателя, от холостого хода до полной нагрузки.

Датчик кислорода (ДК) — определяет количество кислорода в выхлопных газах, после чего ЭБУ корректирует подачу топлива пытаясь достичь стехиометрической смеси.

Датчик массового расхода воздуха (ДМРВ) — один из основных датчиков, измеряет количество воздуха которое попадает в двигатель. На основе этого параметра определяется необходимое количество топлива для соответствующего режима работы двигателя.

Читайте также:  Сколько необходимо залить масла в двигатель

Датчик положения педали сцепления — его основная функция заключается в том, что он снижает рывки при переключении передач.

Датчик положения педали тормоза — используется для переключения режимов АКПП и для системы ABS.

Датчик абсолютного давления во впускном коллекторе (ДАД либо MAP) – как правило используется либо он, либо ДМРВ. Назначение у них одинаковое, отличие в принципе работы. МАР измеряет величину разрежения во впускном коллекторе, и на основе этого ЭБУ делает выводы о расходе воздуха в двигателе.

Датчик детонации – определяет в двигателе детонацию, и смещает при необходимости угол опережения зажигания в более раннюю сторону, т.е. искра на контактах свечи зажигания появляется немного раньше во избежание детонации.

Из исполнительных механизмов стоит отметить:

Регулятор холостого хода (РХХ) – здесь название говорит само за себя, регулирует холостой ход при закрытой дроссельной заслонке.

Топливные форсунки – в момент подачи электрического сигнала от ЭБУ, подают топливо в двигатель.

Катушка зажигания – также в необходимый момент принимает электрический сигнал от ЭБУ, и подает электрический разряд высокого напряжения на свечи зажигания.

Клапан фазорегулятора – на определенных режимах работы двигателя, получает сигнал на смещение шестерни распределительного вала, для получения более высоких показателей мощности двигателя.

Электронный дроссельный узел – применяется в паре с электронной педалью акселератора , в котором присутствует электрический мотор изменяющий угол открытия дроссельной заслонки, при его наличии отсутствуют такие компоненты как РХХ и ДПДЗ, так как они встроены в данный узел.

Ну и наконец, электронный блок управления (ЭБУ) – это так называемые “мозги” системы управления двигателем, именно он определяет какое количество топлива подать в цилиндры двигателя, в определенный момент времени.

Это конечно же не полный список по всем компонентам системы управления двигателем, но наличие каждой из этих деталей является важным условием правильной работы двигателя, более подробно мы их рассмотрим в отдельных статьях.

Источник

Системы управления дизельными двигателями

Рассмотрим кратко некоторые системы с электронным управлением, которые выпускались после 1990 г.

Известно, что для хорошей работы дизельного двигателя необходима точная дозировка, распыл, смешивание с воздухом и т.д. Добиться этого можно только с использованием точной механики, электроники и хороших топлив. Самая высокая точность требуется на режимах холостого хода, когда требуется примерно 5 мм3 топлива на впрыскивание (пятая часть капли). Разрабатываются различные типы и формы камер сгорания. Используются различные типы наддува воздуха. И это даёт результат — современные дизельные двигатели становятся мощнее бензиновых. Основной элемент системы впрыска, создающий высокое давление — топливный насос высокого давления (ТНВД) или насос-форсунка.

Легковые автомобили и лёгкие грузовики используют для создания давления топлива следующие типы устройств:

  • рядные ТНВД разной производительности (M,MW,CW,ZMW…);
  • индивидуальные механические ТНВД(РF);
  • распределительные ТНВД с аксиальным движением плунжера(VE);
  • распределительные ТНВД с радиальным движением плунжера(VR);
  • насос-форсунки(UIS);
  • аккумуляторные системы(CR).

В цилиндрах дизельных двигателей сжимается воздух до 30-50 bar и температурах 700-900 град. Топливо подаётся в конце такта сжатия и сразу начинает испаряться, перемешиваясь с воздухом образует топливовоздушную смесь. Подача топлива в цилиндры осуществляется по различным схемам. Современные дизельные двигатели имеют ТНВД с электронным управлением и электронные компоненты управления системой впрыска очень похожие на элементы бензиновых двигателей (некоторые взаимозаменяемы).

Читайте также:  От чего зависит критический момент двигателя

На рисунке приведен один из вариантов построения системы управления дизельным двигателем а\м ФОРД 2,5 л TCI.

Рис. Рабочая схема системы управления двигателем автомобиля ФОРД 2,5 л ТСI: 1 — ЭБУ двигателем, 2 — диагностический разъем, 3 — датчик температуры охлаждающей жидкости, 4 — датчик оборотов двигателя, 5 — реле питания, 6 — потенциометрический датчик, 7 — клапан опережения впрыска, 8-форсунка с датчиком перемещения иглы, 9 — клапан системы EGR (дожиг), 10 — электровакуумный клапан системы EGR, 11 — электроклапан топливоподачи.

Подобные системы использовали ЭБУ для регулирования момента начала впрыскивания и его длительность по сигналам датчика оборотов, положения иглы форсунки первого цилиндра, температуры двигателя, степени нажатия педали акселератора. На рисунке приведена электросхема системы управления двигателем.

Рис. Электросхема системы управления двигателем автомобиля ФОРД 2,5 л ТСI: 4 — датчик положения потенциометрического датчика, 6 — датчик температуры охлаждающей жидкости, 22 — диагностический разъём, 25 — блок управления, 34 — электровакуумный клапан EGR, 50 — сигнал стартера, 82 — датчик подъёма иглы форсунки первого цилиндра, 85 — свечи подогрева топлива, 86 — клапан открытия\закрытия топливного канала, 87 — клапан времени впрыска топлива, 89 — реле включения свечей подогрева топлива, 90 — индикаторная лампа включения свечей подогрева, 93 — подогревательный элемент в топливном фильтре, 24 — датчик оборотов.

Рис. Расположение элементов управления автомобиля ФОРД 2,5 л TCI.

На рисунке показана схема расположения элементов топливоподачи и управления: 1 — ЭБУ, 2 — диагностический разъём, 3 — датчик температуры охлаждающей жидкости, 24 — датчик оборотов, 5 — реле включения свечей подогрева топлива, 6 — потенциометрический датчик, 7 — клапан открытия\закрытия топливного канала, 8 — датчик подъёма иглы форсунки первого цилиндра, 9 — клапан EGR, 10 — электровакуумный клапан EGR.

Другой тип построения системы управления рассмотрим на примере а\м ОПЕЛЬ Астра G, 2,0 D DTi.

Рис. Схема расположения элементов автомобиля ОПЕЛЬ Астра X20DTL: 4 — датчик оборотов (коленвал); 6 — блок управления двигателем (под крылом); 7,13 — релейно-предохранительный блок; 8 — датчик температуры охлаждающей жидкости; 9 — датчик температуры масла; 10,11 — клапана системы рециркуляции ОГ; 12 — подогрев топлива в фильтре; 14 — ТНВД; 20 — блок управления свечами подогрева топлива; 21 — свечи подогрева топлива; 22 — форсунки; 24 — датчик разрежения во впускном коллекторе(МАР); 25 — расходомер воздуха (MAF); 27 — клапан турбокомпрессора.

Рис. Электросхема системы управления двигателем X20DTL автомобиля ОПЕЛЬ: 23 — электровакуумный клапан системы EGR; 31 — расходомер воздуха (MAF); 32 — датчик разрежения во впускном коллекторе (MAP); 39 — датчик оборотов (СКР-коленвал); 42 — датчик температуры охлаждающей жидкости(ЕСТ); 56 — датчик положения педали тормоза, 58 — датчик положения педали акселератора(АРР); 95 — блок управления свечами подогрева топлива; 100 — ЭБУ двигателем(ЕСМ); 140 — датчик температуры масла; 273 — блок управления ТНВД.

ЭБУ двигателем собирает информацию с датчиков, рассчитывает угол опережения и длительность впрыска и передаёт информацию в электронный блок управления насосом высокого давления (ТНВД). ЭБУ насосом расположен непосредственно на ТНВД и получает информацию о температуре топлива, оборотах и положении вала ТНВД от своих датчиков, рассчитывает цикловую подачу топлива и управляет процессом создания рабочего давления на форсунках. Форсунки механического типа и открываются от давления топлива. Из электросхсмы, приведённой на рисунке видно, что она почти не отличается от схем управления бензиновыми двигателями. Отсутствует только система зажигания и электронные форсунки.

Читайте также:  Какие бывают двигатели для 2112

Более сложной системой питания и управления является конструкция аккумуляторной системы. В таких системах функции создания высокого давления(ТНВД) и обеспечение длительности и момента впрыскивания(ЭБУ) разделены.

Для примера взята элсктросхема системы управления а\м ФОРД 2,0 TDCi.

Рис. Электросхема системы управления автомобилем ФОРД 2,0 TDCi: 1 — топливные форсунки; 29 — свечи подогрева топлива; 31 — расходомер воздуха(МАР); 39 — датчик оборотов двигателя (коленвал); 40 — датчик фазы (распредвал); 42 — датчик температуры охлаждающей жидкости; 43 — датчик температуры поступающего воздуха; 45 — датчик детонации; 58 — датчик положения педали акселератора; 60 — датчик температуры топлива; 63 — датчик разрежения во впускном коллекторе (MAP); 100 — ЭБУ двигателем.

Топливо из бака поступает в ТНВД через фильтр от подкачивающего насоса (электрического или механического типа). TI ГОД работает от привода двигателя и создаёт высокое давление в постоянном режиме, закачивая топливо в топливную рейку(аккумулятор). Как и в бензиновых двигателях форсунки имеют электромагнитные клапана и подсоединены к топливной рейке. Давление топлива в рейке зависит or требуемых условий работы двигателя и регулируется в пределах 230 — 1600 bar. В самой топливной рейке установлен датчик и регулятор давления топлива, аварийный клапан ограничения давления. ЭБУ двигателем сканирует информацию с датчиков и по заложенным программам производит расчёт управляющих величин: давление топлива в аккумуляторной рейке; момент и длительность впрыска топлива и пр. По сигналам кислородных датчиков, расположенных в ОГ, осуществляется корректировка управляющих величин для обеспечения снижения вредных выбросов двигателя, снижения расхода топлива.

На рисунке показана схема расположения элементов системы топливоподачи и управления а\м ФОРД.

Рис. Расположение некоторых элементов питания и управления ФОРД TDCi Duratorg: 3 — датчик распредвала(фазы); 5 — датчик оборотов двигателя (коленвал); 8 — ЭБУ двигателем; 9,15,18 — релейный блок; 10 — клапан рециркуляции ОГ(EGR); 11 — насос высокого давления; 12 — регулятор давления топлива; 13 — датчик высокого давления(FRP) в топливной рейке(CR); 14 — датчик температуры топлива; 16 — свечи подогрева топлива; 19 — топливные форсунки; 20 — датчик температуры поступающего воздуха; 21 — датчик детонации; 22 — датчик разрежения во впускном коллекторе (MAP); 23 — расходомер воздуха(МАР); 25 — регулятор давления наддува.

Современные дизельные двигатели с непосредственным впрыском топлива имеют повышенную мощность и крутящий момент, низкую эмиссию выброса вредных веществ, низкий расход топлива. Всё это позволило поднять популярность легковых а\м, использующих дизельные двигатели. Достижение высоких показателей возможно только при использовании качественных топлив, в противном случае происходит быстрый износ элементов питания топливом и вместо экономии пользователь попадает на дорогостоящий ремонт ТНВД и др. элементов двигателя.

Источник

Adblock
detector