Электромеханические характеристики двигателя постоянного тока последовательного возбуждения

Электромеханическая характеристика двигателя постоянного тока с последовательным возбуждением

Особенностью двигателей постоянного тока с последовательным возбуждением является то, что ток возбуждения одновременно является током якоря и зависит от нагрузки.

Схема двигателя постоянного тока с последовательным возуждением.

Магнитный поток связан с током возбуждения, а соответственно и с током якоря нелинейным законом.

Характеристика связи магнитного потока двигателя постоянного тока с последовательным возуждением с током возбуждения и с током якоря.

Для того чтобы определить зависимость между скоростью и током якоря, заменим нелинейную зависимость 1 на линейную, продлив линейную часть характеристики 1. Тогда магнитный поток для характеристики 2 можно записать следующим образом:

Уравнение электромеханической характеристики двигателя с последовательным возбуждением:

Электромеханическая характеристика двигателя постоянного тока с последовательным возбуждением.

Из формулы электромеханической характеристики видно, что зависимость между скоростью и током будет нелинейная и носит гиперболический характер.

Как видно из выражения механической характеристики, она будет иметь такой же характер, как и электромеханическая.

Проведем анализ электромеханической характеристики двигателя с последовательным возбуждением.

Как видно из характеристики, у этого типа двигателя будет отсутствовать точка идеального холостого хода и точка короткого замыкания. Это означает, что для этого типа двигателя нельзя использовать режим рекуперативного торможения.

В связи с тем, что у этого типа двигателя отсутствует точка холостого хода, скорость вращения двигателя при малых нагрузках стремится к бесконечности, поэтому не допускается включать двигатель с последовательным возбуждением без нагрузки на его валу.

Благодаря наличию области низких скоростей (так называемая, область ползучих скоростей), двигатель с последовательным возбуждением используется в тяговом электроприводе.

Источник

Электромеханические характеристики двигателя постоянного тока последовательного возбуждения

Двигатель постоянного тока последовательного возбуждения представляет собой электрическую машину постоянного тока, в которой обмотка возбуждения подключена последовательно с обмоткой якоря. Для данного типа двигателей справедливо равенство: ток, протекающий в якорной обмотке, равен току в обмотке возбуждения I=I в =I я , что является его главной отличительной особенностью от остальных типов двигателей .

Рисунок 1 – Схема подключения ДПТ ПВ

Стоит обратить внимание на зависимость магнитного потока от нагрузки Ф=f(Iя). Если двигатель будет работать на 25% своей номинальной мощности или меньше, то магнитный поток будет крайне мал, что приведет к постоянному увеличению скорости вала. Препятствовать разгону будут лишь механические потери, и двигатель пойдет в «разнос» . Это приведет к быстрому выходу машины из строя. Все описанное в соответствии с формулой:

Исходя из вышесказанного, ДПТ ПВ нельзя использовать на холостом ходу , постоянно требуется контроль тока якоря. С этой целью последовательно с обмоткой возбуждения устанавливают минимальное токовое реле, которое замыкает якорную цепь только в том случае, если нагрузка на валу достаточна для поддержания номинальной работы двигателя.

Пуск двигателя производят с пусковым сопротивлением, также включенным последовательно в цепь якоря. После пуска это сопротивление выводят, и машина продолжает работать в номинальном режиме на своей естественной характеристике.

Механическая и электромеханическая характеристики ДПТ ПВ одинаковы и имеют гиперболический вид (рисунок 2).

Рисунок 2 – Механическая и электромеханическая характеристики ДПТ ПВ

Скорость вращения ротора двигателя постоянного тока с последовательным возбуждением производится регулированием двух параметров:

— питающее напряжение;
— магнитный поток полюсов двигателя.

Для изменения скорости при помощи входного напряжения, в роторную цепь вводят специальное добавочное сопротивление, или же можно использовать пусковой реостат и для этой цели. Но следует заметить, данный способ является крайне неэкономичным и нецелесообразным, так как большое количество энергии будет рассеиваться на реостате.

Регулировка скорости изменением магнитного потока, осуществляется включением реостата параллельно обмотке возбуждения. Изменяя сопротивление – меняем ток, протекающий через обмотку возбуждения. Иногда обмотку возбуждения разбивают на несколько параллельных секций. В некоторых типах двигателей предусмотрена возможность отключения витков обмотки, так добиваются того же эффекта регулирования.

Тормозные режимы

В данном двигателе отсутствует режим генераторного торможения с отдачей энергии в сеть. На рисунке 2 вы можете видеть, что ветка гиперболы естественной характеристики не пересекает ось ординат (отрицательная скорость отсутствует).

Торможение противовключением получают путем переключения выводов якорной обмотки.

ДПТ ПВ нельзя соединять с механизмом при помощи ременной передачи, так как соскакивание или разрыв ремня приведет к разгрузке двигателя, что вызовет мгновенное повышение числа оборотов и последующему выходу из строя.

ДПТ ПВ нашли свое основное применение в качестве тяговых двигателей подвижного состава электровозов общего назначения, электровозов метрополитена и в трамваях.

Читайте также:  Нет холостого хода двигателя тойота ипсум

Источник

16 Электромеханические характеристики электродвигателей постоянного тока

15. Электромеханические характеристики электродвигателей постоянного тока.

В зависимости от способа подачи напряжения на обмотку возбуждения и обмотку якоря электрические машины постоянного тока делятся на:

1. генераторы (двигатели) с независимым возбуждением;

2. генераторы (двигатели) с самовозбуждением.

В зависимости от способа соединения обмотки якоря и обмотки возбуждения электрические машины с самовозбуждением делятся на:

1. генераторы (двигатели) с параллельным возбуждением;

2. генераторы (двигатели) с последовательным возбуждением;

3. генераторы (двигатели) смешанного возбуждения, имеют две обмотки возбуждения.

Электромеханические характеристики снимаются на электродвигателе — одна величина электрическая (Iн), другая- механическая (n или Мвр).

Электромеханические характеристики – это скоростная электромеханическая характеристика зависимости частоты вращения якоря от тока нагрузки n(Iн) и характеристика зависимости вращающего момента от тока нагрузки Мвр(Iн). Электромеханические характеристики снимаются при неизменном подаваемом напряжении.

15.1. Электродвигателя с параллельным возбуждением.

При изменении нагрузки (при изменении момента сопротивления) будет изменяться ток только в обмотке якоря, и не будет изменяться в обмотке возбуждения.

Вращающийся момент зависит только от тока нагрузки и характеристика будет иметь вид прямой линии.

Зависимость вращающегося момента от тока нагрузки.

, U =Const, С E = Const, ф = Const

При увеличении нагрузки частота вращения якоря будет уменьшаться только из-за увеличения падения напряжения в обмотке якоря. Но, т.к. сопротивление обмотки якоря мало, то и падение напряжения в обмотке якоря мало и составляет примерно 4 % от номинального напряжения при номинальном токе. Характеристика будет иметь вид прямой линии с малым наклоном и называется жесткой (когда при изменении одной величины в широких пределах другая величина изменяется незначительно).

При уменьшении нагрузки частота вращения якоря увеличивается, противо Э.Д.С. возрастает и при какой-то n величина наводимой в обмотке якоря Э.Д.С. сравнивается с приложенным напряжением.

При дальнейшем разгоне Э.Д.С. становится выше приложенного напряжения, ток по обмотке якоря пойдет в другом направлении уже под действием Э.Д.С. – двигатель автоматически перешел в генераторный режим.

Электромеханические характеристики для двигателя с независимым возбудителем, имеют внешний вид, подобный электромеханическим характеристикам двигателя с параллельным возбуждением из-за Ф = Const.

15.2.Электродвигателя с последовательным возбудителем.

Ток нагрузки равен току якоря и току возбуждения. При изменении нагрузки будет изменяться ток в обмотке якоря и одновременно в обмотке возбуждения, а, значит, будет изменяться и магнитный поток в соответствии с кривой намагничивания

где w — число витков.

Вращающий момент зависит от тока в квадрате и характеристика будет иметь вид параболы. Так происходит до магнитного насыщения полюсов. При дальнейшем увеличении нагрузки магнитный поток будет оставаться неизменным, вращающий момент будет зависеть только от тока и характеристика переходит в прямую линию.

Зависимость вращающегося момента от тока нагрузки.

При увеличении нагрузки частота вращения якоря будет уменьшаться из-за увеличения падения напряжения в обмотках двигателя и, в большей степени, из-за увеличения магнитного потока, что вызывает резкое понижение частоты вращения якоря. По мере роста тока нагрузки замедляется рост магнитного потока, а затем наступает магнитное насыщение полюсов (см. выше кривую намагничивания). При дальнейшем увеличении нагрузки магнитный поток остается постоянным, частота вращения якоря понижается только из-за увеличения падения напряжения в

обмотках двигателя. Характеристика переходит в прямую линию.

Скоростная электромеханическая характеристика мягкая.

При уменьшении нагрузки частота вращения увеличивается, но уменьшается и магнитный поток. Поэтому, наводимая противо Э.Д.С. в обмотке якоря не может преодолеть приложенное напряжение. Электродвигатели с последовательным возбуждением автоматически не переходят в генераторный режим.

Источник

Механические характеристики и способы регулирования скорости двигателей постоянного тока последовательного и смешанного возбуждения

4.1 Электромеханические и механические характеристики ДПТ последовательного возбуждения (ПВ)

Схема подключения ДПТ ПВ приведена на рис. 4.1. В отличие от ДПТ независимого возбуждения здесь обмотка возбуждения ОВМ включена последовательно с якорем и через ОВМ протекает ток якоря Iя.

Исходные выражения для электромеханической, механической характеристик и момента ДПТ ПВ можно записать в том же виде, что и для ДПТ независимого возбуждения (см. уравнения (2.3) — (2.5)):

ωд = ; ωд = ; (4.1)

В отличие от ДПТ НВ в этих выражениях сопротивление Rя включает в себя и сопротивление обмотки возбуждения. Второе, наиболее важное отличие, заключается в том, что магнитный поток Φ является функцией тока якоря. Зависимость магнитного потока Φ от тока не является аналитической кривой (рис. 4.2), что не позволяет получить аналитические выражения для электромеханической и механической характеристик ДПТ ПВ. Приведенные уравнения позволяют провести лишь качественный анализ.

Читайте также:  При запуске двигателя свистит сцепление

Естественные электромеханическая и механическая характеристики двигателя показаны на рис. 4.2, рис. 4.3, кривые 1. Очевидно, что при Iя=0 магнитный поток также равен нулю, и угловая скорость за счет первого слагаемого в выражениях (4.1) стремится к бесконечности (как говорят, двигатель идет «вразнос»), т. е. режим холостого хода для ДПТ ПВ является недопустимым.

При возрастании тока якоря магнитный поток Ф вначале растет примерно пропорционально току якоря, а скорость резко снижается (крутопадающий участок на характеристиках).

При больших токах двигатель работает в зоне, близкой к насыщению, поэтому его магнитный поток здесь мало меняется при изменении тока и характеристика становится более жесткой, приближаясь по виду к характеристике ДПТ НВ.

На практике для расчетов используют так называемые универсальные характеристики ДПТ ПВ, которые приводятся в каталогах.

4.2 Способы регулирования угловой скорости ДПТ ПВ

Для ДПТ ПВ, как и для ДПТ НВ, возможны три основных способа регулирования скорости: 1) введением добавочных сопротивлений в цепь якоря; 2) изменением подводимого напряжения; 3) изменением потока возбуждения.

Регулирование угловой скорости введением добавочных сопротивлений является простейшим способом регулирования и широко используется в подъемных и транспортных механизмах. Как следует из уравнений (4.1), при увеличении добавочного сопротивления Rд второе слагаемое в этих выражениях увеличивается, т.е. увеличивается падение скорости от нагрузки. Соответственно электромеханическая и механическая характеристики в области больших токов становятся более крутопадающими (кривые 2 на рис. 4.2, рис. 4.3 — характеристики с Rд). Введение добавочных сопротивлений в цепь якоря ДПТ ПВ позволяет, как и для ДПТ НВ, регулировать скорость в относительно небольшом диапазоне и ограничить ток якоря при пуске. Обычно величину добавочных сопротивлений изменяют ступенями с помощью релейно-контакторной аппаратуры, как изложено в п. 2.2.

Основные недостатки такого регулирования – значительные потери энергии в добавочном сопротивлении, небольшой диапазон регулирования, ступенчатость регулирования.

Регулирование угловой скорости изменением подводимого напряжения может быть осуществлено так же, как для ДПТ НВ, с помощью отдельного генератора или тиристорного преобразователя. Регулирование ведется уменьшением подводимого напряжения и приводит, как следует из уравнений (4.1), к снижению скорости. В транспортных механизмах часто два тяговых двигателя одинаковой мощности работают как многодвигательный электропривод (например двухосный тяговый электропривод). При этом появляется дополнительная возможность ступенчатого изменения подводимого к двигателю напряжения за счет переключения двигателей с последовательного включения на параллельное. При последовательном включении на каждый двигатель приходится половина напряжения сети. Когда двигатели подключаются параллельно, каждый из них оказывается включенным на полное напряжение сети. Такое регулирование позволяет исключить нерациональную трату энергии.

Регулирование угловой скорости ослаблением потока возбуждения позволяет, как и для ДПТ НВ, получить скорости выше основной. Действительно, как следует из уравнений (4.1), уменьшение потока Φ приводит при том же токе якоря к возрастанию первого слагаемого. Ослабление потока возбуждения обычно осуществляют за счет шунтирования обмотки возбуждения добавочным сопротивлением.

Из анализа механических характеристик ДПТ ПВ следует, что они являются весьма удобными для электрической тяги (трамвай, метро, троллейбус, электровозы, тепловозы) и подъемных механизмов по следующим соображениям:

1) двигатель имеет низкую скорость при больших нагрузках и высокую — при малых, тем самым обеспечивается естественное регулирование скорости движения при изменении сопротивления перемещению;

2) транспортные и грузоподъемные механизмы требуют больших начальных моментов при пуске, именно такие моменты обеспечивает ДПТ ПВ; у ДПТ НВ момент пропорционален току — М

I, а у двигателей последовательного возбуждения М

I 2 . А так как при пуске двигателя I = (1,5…2,0)Iн, то двигатели последовательного возбуждения развивают значительно больший пусковой момент по сравнению с ДПТ НВ;

3) момент ДПТ ПВ не зависит от напряжения питающей сети, что особенно важно для электрической тяги, где в контактной сети могут возникать большие отклонения напряжения.

Основным недостатком характеристик ДПТ ПВ является неограниченное возрастание скорости при малых токах якоря и, как следствие, невозможность обеспечить режим генераторного торможения.

4.3 Тормозные режимы ДПТ ПВ

Для ДПТ ПВ возможны два тормозных режима: торможение противовключением и динамическое торможение.

При торможении противовключением в цепь якоря вводится добавочное сопротивление для ограничения тока якоря. Механические характеристики при этом являются продолжением характеристик двигательного режима в области отрицательной угловой скорости (см. рис. 4.2, рис. 4.3). Такой режим торможения, как и для ДПТ НВ, может возникать, когда момент на валу двигателя превышает значение М1 (рис. 4.3).

Динамическое торможение ДПТ ПВ может осуществляться двумя способами: с самовозбуждением и с независимым возбуждением. При использовании первого способа якорь и обмотка возбуждения отключаются от сети и замыкаются на добавочное сопротивление (рис. 4.4). При этом обмотку возбуждения или якорь переключают так, чтобы направление тока в обмотке возбуждения не изменилось. Если этого не сделать, то произойдет размагничивание машины.

Читайте также:  Сколько масла в двигателе opel vectra

При использовании второго способа — динамического торможения с независимым возбуждением — обмотку якоря замыкают на добавочное сопротивление, а на обмотку возбуждения подают напряжение от источника. Схема включения при этом аналогична схеме динамического торможения ДПТ НВ (рис. 2.14), аналогичны и получаемые тормозные характеристики.

Оба рассмотренных тормозных режима ДПТ ПВ малоэкономичны, так как энергия теряется на добавочных сопротивлениях.

В транспортных средствах очень важно обеспечить отдачу (рекуперацию) электроэнергии в сеть, например при движении на спуске. Однако, как уже отмечалось, генераторное торможение ДПТ ПВ невозможно. Чтобы решить эту проблему, в электротяге используют переключение обмотки возбуждения ДПТ с последовательного на независимое. Для этого отключают обмотку возбуждения от якоря и подают на нее через добавочное сопротивление напряжение сети. В результате машина работает с независимым возбуждением. Генераторное торможение такой машины рассмотрено в пп. 2.5, 3.5.

4.4 Механические характеристики и регулирование скорости ДТП смешанного возбуждения (СВ)

Схема подключения ДТП СВ приведена на рис. 4.5. Машина имеет две обмотки возбуждения: последовательную ОВМ1 и независимую ОВМ2.

Уравнения для электромеханической и механической характеристик двигателя аналогичны соответствующим уравнениям для ДТП ПВ:

ωд = ; ωд = . (4.2)

Причем здесь магнитный поток определяется как сумма магнитных потоков Φ1 – обмотки ОВМ1 и Φ2 – ОВМ2:

Для ДТП СВ, в отличие от ДПТ ПВ, скорость идеального холостого хода имеет конечное значение и определяется потоком Φ2:

ω = .

Механическая характеристика двигателя смешанного возбуждения (кривая 3 на рис. 4.6) занимает промежуточное положение между характеристикой ДПТ НВ – кривая 1 и характеристикой ДПТ ПВ – кривая 2. Скорость ДПТ СВ при малых нагрузках изменяется значительно. А при больших нагрузках характеристика достаточно жесткая и близка к линейной, как у ДПТ НВ (см. соответствующие пояснения в п.2.4.1).

Для ДПТ СВ возможны те же тормозные режимы, что и для ДПТ НВ: 1) генераторное; 2) динамическое; 3) противовключением.

Генераторное торможение соответствует участку характеристики при скорости больше ω0. При переходе в режим генераторного торможения ток в якоре и в обмотке последовательного возбуждения меняет свой знак, что может размагнитить машину. Поэтому при возрастании скорости до ω ОВМ1 обычно шунтируют, и машина работает как ДПТ НВ.

Для динамического торможения якорь двигателя замыкают на добавочное сопротивление, а ОВМ1 отключают, чтобы избежать размагничивания. В результате машина работает как ДПТ НВ и имеет такие же тормозные характеристики.

При торможении противовключением в цепь якоря вводят добавочное сопротивление, ограничивающее ток якоря. Характеристика при этом становится более мягкой (кривая 4 на рис. 4.6). Машина переходит в режим противовключения при отрицательных значениях скорости.

Регулирование скорости ДПТ СВ так же, как ДПТ ПВ, может осуществляться: 1) изменением подводимого напряжения; 2) введением добавочного сопротивления в цепь якоря; 3) изменением потока последовательной обмотки возбуждения. Кроме того, для ДПТ СВ появляется дополнительная возможность регулирования скорости изменением потока независимой обмотки возбуждения.

Из рассмотренного следует, что ДПТ СВ имеют характеристики, весьма удобные для тягового электропривода. По сравнению с ДПТ ПВ машины со смешанным возбуждением позволяют обеспечить генераторное торможение и регулирование скорости потоком обмотки независимого возбуждения.

ЗАКЛЮЧЕНИЕ

В настоящее время в промышленности и на транспорте в качестве регулируемого электропривода получил широкое применение электропривод постоянного тока, основные сведения о котором рассмотрены в учебном пособии.

Рассмотренные вопросы, конечно же, не исчерпывают всего многообразия применяемых и перспективных электромеханических преобразователей и электроприводов.

В 50-е годы прошлого столетия большие надежды возлагались на частотно-регулируемый электропривод с асинхронным двигателем с короткозамкнутым ротором.

Асинхронный двигатель по своим эксплуатационным свойствам, массогабаритным показателям значительно превосходит двигатель постоянного тока и имеет более низкую стоимость. Однако необходимость выпрямителей и достаточно сложных преобразователей частоты в значительной мере ослабляет эффект снижения стоимости и массогабаритных показателей регулируемого электропривода с асинхронным двигателем.

Поэтому регулируемый электропривод с машиной постоянного тока и в настоящее время во многих областях техники является конкурентоспособным с частотно-регулируемым электроприводом. Подтверждением этому может служить и тот факт, что с 60-х годов промышленно развитые страны каждые 5-7 лет в 2 раза увеличивают выпуск машин постоянного тока.

Известные достоинства коллекторных машин постоянного тока: высокая плотность энергии и отличные регулировочные характеристики, по-видимому, гарантируют их широкое использование в обозримом будущем.

Источник

Adblock
detector