Эквивалентная схема замещения двигателя

Схема замещения асинхронного двигателя

При практических расчетах вместо реального асинхронного двигателя, на схеме его заменяют эквивалентной схемой замещения, в которой электромагнитная связь заменена на электрическую. При этом параметры цепи ротора приводятся к параметрам цепи статора.

По сути, схема замещения асинхронного двигателя аналогична схеме замещения трансформатора. Различие в том, что у асинхронного двигателя электрическая энергия преобразуется в механическую энергию (а не в электрическую, как это происходит в трансформаторе), поэтому на схеме замещения добавляют переменное активное сопротивление r2 ‘ (1-s)/s, которое зависит от скольжения. В трансформаторе, аналогом этого сопротивления является сопротивление нагрузки Z н .

Величина скольжения определяет переменное сопротивление, например, при отсутствии нагрузки на валу, скольжение практически равно нулю s≈0, а значит переменное сопротивление равно бесконечности, что соответствует режиму холостого хода. И наоборот, при перегрузке двигателя, s=1, а значит сопротивление равно нулю, что соответствует режиму короткого замыкания.

Как и у трансформатора, у асинхронного двигателя есть Т-образная схема замещения.

Более удобной при практических расчетах является Г-образная схема замещения.

В Г-образной схеме, намагничивающая ветвь вынесена к входным зажимам. Таким образом, вместо трех ветвей получают две ветви, первая – намагничивающая, а вторая – рабочая. Но данное действие требует внесение дополнительного коэффициента c1, который представляет собой отношение напряжения подводимого к двигателю, к ЭДС статора.

Величина c1 приблизительно равна 1, поэтому для максимального упрощения, на практике принимают значение c1≈1. При этом следует учитывать, что значение коэффициента c1 уменьшается с увеличением мощности двигателя, поэтому более точное приближение будет соответствовать более мощному двигателю.

Параметры схемы замещения рассматриваются подробнее в статье векторная диаграмма асинхронного двигателя

Источник

СХЕМА ЗАМЕЩЕНИЯ АСИНХРОННОГО ДВИГАТЕЛЯ

Для анализа работы асинхронного двигателя пользуются схемой замещения. Схема замещения асинхронного двигателя аналогична схеме замещения трансформатора и представляет собой электрическую схему, в которой вторичная цепь (обмотка ротора) соединена с первичной цепью (обмоткой статора) гальванически вместо магнитной связи, существующей в двигателе.

Рис. 10.17. Схема замещения асинхронного двигателя

Основное отличие асинхронного двигателя от трансформатора в энергетическом отношении состоит в следующем. Если в трансформаторе энергия, переданная переменным магнитным полем во вторичную цепь, поступает к потребителю в виде электрической энергии, то в асинхронном двигателе энергия, переданная вращающимся магнитным полем ротору, преобразуется в механическую и отдается валом двигателя потребителю в виде механической энергии.

Электромагнитные мощности, передаваемые магнитным полем во вторичную цепь трансформатора и ротору двигателя, имеют одинаковые выражения:

Читайте также:  Сколько проводов у двигателя с одной фазой

В трансформаторе электромагнитная мощность за вычетом потерь во вторичной обмотке поступает к потребителю:

где rп — сопротивление потребителя. В асинхронном двигателе электромагнитная мощность за вычетом потерь в обмотке ротора превращается в механическую мощность:

Подставив в (10.47) вместо Р ее значение из (10.42), получим

Pмех=3I2 2 r2(1 — s) =3I’2 2 r’2(1 — s) = 3I2 2 r’э = 3I’2 2 r’э,
s s
где r’э = r’2 1 — s .
s

Сравнивая выражения (10.46) и (10.48), можно заключить, что

Таким образом, потери мощности в сопротивлении r’э численно равны механической мощности, развиваемой двигателем.

Заменив в схеме замещения трансформатора сопротивление нагрузки r’п на r’э = r’2 (1 — s)/s,получим схему замещения асинхронного двигателя (рис. 10.17). Все остальные элементы схемы замещения аналогичны соответствующим элементам схемы замещения трансформатора: r1, х1 — активное сопротивление и индуктивное сопротивление рассеяния фазы обмотки статора; r’2, х’2— приведенные к обмотке статора активное сопротивление и индуктивное сопротивление рассеяния фазы обмотки ротора.

Приведенные значения определяются так же, как и для трансформатора:

Может возникнуть сомнение в возможности использования гальванической связи цепей статора и ротора в схеме замещения, поскольку частоты в этих цепях на первый взгляд не одинаковы. Первая часть схемы замещения представляет собой эквивалентную схему фазы обмотки ротора, которая, как было показано в § 10.7, приведена к частоте тока статора. В реальном же двигателе в отличие от схемы замещения частоты тока ротора и статора не одинаковы.

Источник

Т-образная и Г-образная схемы замещения асинхронной машины

Как уже отмечалось, в неподвижном асинхронном двигателе электромагнитные процессы протекают, в основном так же, как в трансформаторе. В таком случае для анализа электромагнитных про­цессов в эквивалентной асинхронной машине с неподвижным ротором может быть использована Т-образная схема замещения трансформато­ра.

При составлении схемы замещения асинхронной машины рис.3 также, как в теории трансформаторов, обмотка ротора с числом фаз m2 и числом витков в фазе w2, заменяется приведенной об­моткой, имеющей число фаз m1 и число витков фазы w1, как у обмотки статора.

Рис.3. Т-образная схема замещения асинхронной машины.

Как и в трансформаторе при приведении параметров асинхрон­ной машины исходят из энергетического соответствия замещенной и реальной машин, но в асинхронной машине приведение параметров ро­тора к цепи статора несколько сложнее, чем в трансформаторе из-за пространственного распределения обмоток вдоль окружностей ротора и статора.

Так, из выражений (18) и (19) следует, что коэффициент при­ведения токов равен

Приведенная ЭДС Е / 2 обмотки ротора должна быть равна ЭДС Е1 об­мотки статора, тогда, используя выражения (11) и (12), получим

Читайте также:  Как заводить двигатель на газу зимой

, (29)

где — коэффициент приведения ЭДС. (30)

При приведении сопротивления r2 исходят из того, что по­тери в активном сопротивлении ротора должны остаться без измене­ния. Тогда получим

, (31)

где k=ke · ki — коэффициент приведения сопротивлений.

При приведении индуктивного сопротивления рассеяния исходят из того, что угол ψ2 между ЭДC E2 и током I2 остается неизменным

Для Т-образной схемы замещения асинхронной машины запишем уравнения напряжений и токов в виде

U1= — Ė1+Zİ1 = — Ė1 + r1İ1 + jx1İ1

По своей структуре эта система уравнений аналогична системе ура­внений для трансформатора, к вторичной обмотке которого подклю­чено сопротивление нагрузки rМЕХ=r2’(1-S)/S. Количественное различие между схемами замещения асинхронной машины и трансформа­тора обусловлено значительно большим током холостого ходе асинхронной машины I10=(0,25-0,5)I1НОМ. Это объясняется наличием в магнитной цепи асинхронной машины воздушного зазора δ между статором и ротором, что приводит к увеличению магнитного сопроти­вления цепи и соответствующему уменьшению электрического сопротив­ления намагничивающей ветви схемы замещения. Это утверждение хо­рошо иллюстрируется формулой, выведенной Л.Р.Нейманом

где ZЭ — полное сопротивление контура намагничивания эквивалентной схемы замещения,

ZМ — полное магнитное сопротивление.

Системе уравнений (33) соответствует пространственно-времен­ная диаграмма асинхронной машины, приведенной к трансформатору. рис.4. По своему виду эта диаграмма похожа на диаграмму трансфор­матора. но имеет несколько более сложное физическое толкование. Диаграмма асинхронной машины изображается на комплексной плоскости, во-первых, для однопериодной модели, во-вторых, имеет две системы осей: одни оси связаны со статором, а вторые связаны с заторможенным в произвольном положении ротором (как правило, оси фаз статора не совпадают с осями фаз ротора).

При переходе от комплексных величин, изображенных векторами на комплексной плоскости, которые вращаются с угловой скоростью ω1=2πf1 / p, к мгновенным фазным величинам нужно спроектировать векторы статорных величин на оси фаз статора (A1; B1; C1), а векторы роторных величин на неподвижные произвольно ориенти­рованные оси фаз ротора (A2; B2; C2).

Рис.4. Пространственно-временная диаграмма асинхронной машины. P=1.

Итак, можно сделать вывод, что для исследования электромаг­нитных процессов в асинхронной машине может быть использована теория трансформаторов, что позволяет упростить задачу исследо­вания.

Т-образная схема замещения хорошо отражает реальные физиче­ские процессы, но при исследовании, например, механических характеристик асинхронной машины намного удобнее пользоваться вы­ражениями, которые содержат вместо ЭДС Е1=E / 2 напряжение сети U1. В Т-образной

схеме замещения при изменения скольжения S изменяются не только токи I1 и I / 2, но и ток намагничивающего контура I10, а следовательно, изменяется и ЭДC машины, в то время как напряжение сети остается постоянным независящим от нагрузки и режима работы.

Читайте также:  2101 что такое расточка двигателя

В ряде случаев более удобной является другая, так называемая, Г-образная схема замещения асинхронной машины рис.5, в которой намагничивающая ветвь вынесена

Рис.5. Г-образные схемы замещения асинхронной машины.

на зажимы с напряжением се­ти U1. Для обоснования такой схемы замещения сделаем некоторые математические преобразования выражений, составленных по Т-образной схеме замещения асинхронной машины.

При синхронном вращении ротора и поля, т.е. в режиме идеального холостого хода асинхронной машины имеем: S=0; r / 2(1-S)/S = ∞; İ / 2=0; İ110. Для намагничивающей ветви Т-образной схемы замещения можно записать

Подставим значение ЭДС E1 в уравнение напряжения (33), записанное для цепи статора в режиме идеального холостого хода,

Найдем отношение напряжения сети U1 (35) к ЭДС E1 (34) для идеального холостого хода асинхронной машины

Комплексный коэффициент С1 может быть представлен в алгебраической, показательной и

(37)

Мнимая часть комплексного числа С1 обычно отрицательная, в свя­зи с чем аргумент χ имеет знак минус. Аргумент χ определя­ет угол поворота вектора ЭДC (-Е1) относительно напряжения U1. В связи с тем, что угол χ мал, например, в машинах, мощностью более 8 кВт угол χ // 2 — преобразованный ток рабочей ветви Т-образной схемы замещения

Выразим ток İ // 2 через напряжение сети U1 и параметры асин­хронной машины. Для этого в системе уравнений (33) в уравнение напряжения, записанное для обмотки статора, подставим выражение ЭДС Е1, составленное для обмотки ротора, получим уравнение для напряжения U1 в виде

Преобразуем полученное уравнение с учетом выражений (40)-(42)

Из этого выражения найдем ток I // 2

или с учетом выражения (36)

Ток статора İ1 найдем из уравнения (40) путем подстановки в это уравнение вместо токов İ00 и İ // 2 их выражений из (41) и (43)

В асинхронных машинах малой и средней мощности коэффициент С1 близок к единице и равен С1≈1,02-1,08.

Итак, уравнения (41), (43), (44), записанные для токов İ00, İ // 2, İ1, соответствуют Г-образной схеме замещения рис.5а.

При анализе электромагнитных процессов в машинах общего применения часто по­лагают C1≈1, что существенно облегчает расчеты и мало сказывается на точности конечных результатов расчета. Г-образную схему замещения при C1=1 называют упрощенной схемой замещения с вынесенным намагничивающим контуром рис.5б. В этой схема без боль­шой погрешности можно принять, что в ветви намагничивания вместо тока İ00 протекает ток İ10, а в рабочей ветви вместо то­ка İ // 2 — ток İ / 2, как в Т-образной схеме замещения.

Источник

Adblock
detector