Эксплуатационные характеристики двигателя внутреннего сгорания

Устройство автомобилей

Характеристики двигателей

Оценить мощностные и экономические возможности двигателя внутреннего сгорания при работе его в различных эксплуатационных условиях можно по техническим и технологическим характеристикам, получаемым в результате различных испытаний – стендовых, дорожных, полигонных, эксплуатационных и т. п.

Характеристикой двигателя называется зависимость основных показателей его работы (мощности, вращающего момента на выходном валу, расхода топлива) от одного из параметров режима работы (частоты вращения коленчатого вала, внешней нагрузки и т. п.). Характеристики двигателя определяют его эксплуатационные качества, уровень технического совершенства, правильность регулировок, а также его назначение.

Основные характеристики автомобильных двигателей определяются ГОСТ 14846-81 «Двигатели автомобильные. Методы стендовых испытаний»:

скоростная характеристика – зависимость основных эффективных показателей работы двигателя от частоты вращения его коленчатого вала;

коэффициент приспособляемости – способность двигателя преодолевать кратковременные перегрузки;

нагрузочные характеристики – зависимости удельного и часового расхода топлива от мощности, развиваемой двигателем;

характеристика холостого хода – зависимость часового расхода топлива от частоты вращения коленчатого вала при работе двигателя без нагрузки;

регулировочные характеристики – зависимость мощностных и экономических показателей работы от состава рабочей смеси, воспламеняемой в цилиндрах двигателя, угла опережения зажигания или впрыска, температуры двигателя и других регулируемых факторов.

Нагрузочная характеристика

Нагрузочной характеристикой называется изменение часового и удельного расхода топлива в зависимости от величины нагрузки. Работа на режимах нагрузочной характеристики наиболее характерна для двигателей, которые используются для привода электрических агрегатов, насосов, компрессоров, тракторов. В частности, нагрузочная характеристика имитирует работу двигателя на автомобиле, при его движении с постоянной скоростью на одной из передач в условиях переменного сопротивления со стороны дороги.

Цель получения нагрузочной характеристики – определение топливной экономичности двигателя.

Условия получения нагрузочной характеристики:

  • независимая переменная величина – нагрузка на двигатель (так как с увеличением нагрузки для ее преодоления двигатель должен увеличивать мощность Nе , среднее эффективное давление ре и крутящий момент Мк , то нагрузку выражают в процентах относительно одного из этих параметров;
  • постоянная величина – частота вращения коленчатого вала;
  • зависимые переменные величины – удельный расход топлива gе и часовой расход топлива Gt .

Скоростная характеристика

Скоростная характеристика двигателя представляет собой зависимость основных эффективных показателей его работы (эффективная мощность, вращающий момент на выходном валу, удельный и часовой расход топлива) от частоты вращения коленчатого вала при постоянной подаче топлива в цилиндры в установившемся тепловом режиме.

Различают внешнюю и частичные скоростные характеристики.
Скоростная характеристика, полученная при полной подаче топлива (полностью открытой дроссельной заслонке или соответствующем положении рейки топливного насоса дизеля) и при углах опережения зажигания или начала впрыскивания топлива по техническим условиям на двигатель, называется внешней скоростной характеристикой двигателя .
Внешняя скоростная характеристика позволяет определить максимальные мощностные показатели двигателя и оценить его экономичность при полных нагрузках.

Характеристики, соответствующие постоянным промежуточным положениям дроссельной заслонки или рейки топливного насоса, называются частичными скоростными характеристиками двигателя . Иными словами, любая характеристика, полученная при неполном открытии регулирующего органа двигателя, называется частичной скоростной характеристикой.

Скоростную характеристику реального двигателя строят по результатам стендовых испытаний.
Вал работающего двигателя нагружают с помощью тормоза, обеспечивая фиксирование частоты вращения от минимально устойчивой до максимально допустимой. При этом на каждой частоте замеряют тормозной момент Мт в (Н×м) и часовой расход топлива в кг/ч.

По результатам испытаний строят кривые зависимости эффективного вращающего момента и часового расхода топлива от частоты вращения вала двигателя.
Затем, используя формулы:

находят эффективную мощность и удельный расход топлива, после чего отображают их графические зависимости.

В зависимости от укомплектованности двигателя вспомогательными устройствами и оборудованием определяют мощность нетто (полная комплектация) или мощность брутто (неполная комплектация).
Различают следующие характерные частоты вращения коленчатого вала:

  • минимальная частота вращения, при которой возможна устойчивая работа двигателя при полной подаче топлива;
  • частота вращения, соответствующая наибольшему вращающему моменту;
  • частота вращения, соответствующая наибольшей мощности двигателя;
  • наибольшая возможная частота вращения коленчатого вала, устанавливаемая ограничителем частоты вращения.

Характеристика холостого хода является частным случаем скоростной характеристики двигателя.

Внешнюю скоростную характеристику вновь проектируемого двигателя можно построить по эмпирическим зависимостям, где максимальная мощность и соответствующие ей удельный расход топлива и частота вращения берутся из данных теплового расчета двигателя при его конструировании.

Приемистость и приспособляемость двигателя

Способность двигателя с ростом частоты вращения коленчатого вала наращивать мощность называется его приемистостью .
Приемистость двигателя непосредственно влияет на приемистость автомобиля, т. е. его способности ускоряться и разгоняться. Скоростная характеристика во многом отражает степень приемистости двигателя: чем круче кривая Nе , тем приемистость двигателя больше.
Если сравнить скоростные характеристики карбюраторного двигателя и дизеля, то можно заметить, что кривая мощности Nе у дизеля круче, т. е. дизель обладает большей приемистостью.

Способность двигателя с ростом внешней нагрузки сохранять частоту вращения коленчатого вала называется его приспособляемостью (самоприспособляемостью или эластичностью).
Например, затяжной подъем один из автомобилей может преодолеть без переключения КПП на пониженную передачу, а другой при таких же условиях заглохнет. Следовательно, в первом случае приспособляемость двигателя автомобиля выше, чем во втором.
Приспособляемость автомобиля к изменению внешней нагрузки оценивается коэффициентом приспособляемости (коэффициентом самоприспособляемости). Чем больше значение этого коэффициента, тем лучше приспособляемость автомобиля к увеличению внешней нагрузки.

Читайте также:  Какой двигатель у форда лазера

Устойчивость режима автомобильного двигателя к увеличению внешней нагрузки оценивают по запасу крутящего момента, который определяется отношением максимального крутящего момента Мкmax к крутящему моменту Мкном , развиваемому двигателем на номинальном режиме; это отношение и называют коэффициентом приспособляемости k .

Коэффициент приспособляемости k , характеризующий приспособляемость двигателя к изменению внешней нагрузки, может быть определен по формуле:

В бензиновых двигателях средний коэффициент приспособляемости k = 1,25. 1,35, в дизельных k = 1,05. 1,2.
Поскольку коэффициент приспособляемости характеризует способность двигателя преодолевать кратковременные перегрузки без переключения передач, можно сделать вывод, что дизельные двигатели переносят изменение внешней нагрузки хуже, чем карбюраторные. Чтобы преодолеть этот недостаток дизелей увеличивают размеры цилиндров, что приводит к увеличению крутящего момента, а также применяют всережимные регуляторы частоты вращения коленчатого вала.

Источник

Двигатель внутреннего сгорания — устройство, принцип работы и классификация

Вокруг активно говорят про электокары, но двигатель внутреннего сгорания (ДВС) никуда не исчезает. Почему? О принципе работы и конструкции двигателей внутреннего сгорания , плюсах и минусах ДВС – в нашем материале.

Что такое ДВС?

ДВС (двигатель внутреннего сгорания) – один из самых популярных видов моторов. Это тепловой двигатель, в котором топливо сгорает непосредственно внутри него самого – во внутренней камере. Дополнительные внешние носители не требуются.

ДВС работает, благодаря физическому эффекту теплового расширения газов. Горючая смесь в момент воспламенения смеси увеличивается в объёме, и освобождается энергия.

Вне зависимости от того, о каком из ДВС идёт речь – о ДВС с искровым зажиганием – двигателе Отто (это, прежде всего, инжекторный и карбюраторный бензиновые двигатели) или о ДВС с воспламенением от сжатия (дизельный мотор, дизель) сила давления газов воздействует на поршень ДВС. Без поршня сложно представить большинство современных ДВС. В том числе, он есть даже у комбинированного ДВС. Только в последнем, кроме поршня, мотору работать помогает ещё и лопаточное оборудование (компрессоры, турбины).

Бензиновые, дизельные поршневые ДВС – это двигатели, с которыми мы активно встречаемся на любом транспорте, в том числе легковом, а ДВС, работающие не только за счёт поршня, но и за счёт компрессора, турбины – это решения, без которых сложно представить современные суда, тепловозы, автотракторную технику, самосвалы высокой грузоподъёмности, т.е. транспорт, где нужны двигатели средней (> 5 кВт) или высокой мощности (> 100 кВт).

Без двигателя внутреннего сгорания невозможно представить движение практически любого транспорта (кроме электрического) – автомобилей, мотоциклов, самолётов.

  • Несмотря на то, что технологии, в том числе, в транспортной сфере, развиваются семимильными шагами, ДВС на авто человечество будет устанавливать еще долго. Даже концерн Volkswagen, который, как известно, готовит масштабную программу электрификации модельного ряда своих двигателей, пока не спешит отказываться от ДВС. Открытой является информация, что автомобили с ДВС будут выпускаться не только в ближайшие 5, но и 30 лет. Да, время разработок новых ДВС у концерна уже подходит к финальной стадии, но производство никто сворачивать не будет. Нынешние актуальные разработки будут использоваться и впредь. Некоторые же концерны по производству авто и вовсе не спешат переходить на электромоторы. Это можно обосновать и экономически, и технически. Именно ДВС из всех моторов одни из наиболее надежных и при этом дешёвых, а постоянное совершенствование моделей ДВС позволяет говорить об уверенном прогрессе инженеров, улучшении эксплуатационных характеристик двигателей внутреннего сгорания и минимизации их негативного влияния на атмосферу.
  • Современные дизельные двигатели внутреннего сгорания позволяют снизить расход топлива на 25-30 %. Лучше всего такое уменьшение расхода топлива смогли достигнуть производители дизельных ДВС. Но и производители бензиновых двигателей внутреннего сгорания активно удивляют. Ещё в 2012-м году назад американский концерн Transonic Combustion (разработчик так называемых сверхкритических систем впрыска топлива) впечатлил решением TSCiTM. Благодаря новому подходу к конструкции топливного насоса и инжекторам, бензиновый двигатель стал существенно экономичней.
  • Большие ставки на ДВС делает и концерн Mazda. Он акцентирует внимание на изменении конструкции выпускной системы. Благодаря ей улучшена продувка газов, повышена степень их сжатия, а, вместе с тем, снижены и обороты (причём сразу на 15%). А это и экономия расхода топлива, и уменьшение вредных выбросов – несмотря на то, что речь идёт о бензиновом двигателе, а не о дизеле.

Устройство двигателя внутреннего сгорания

При разнообразии конструктивных решений устройство у всех ДВС схоже. Двигатель внутреннего сгорания образован следующими компонентами:

  • Блок цилиндров . Блоки цилиндров – цельнолитые детали. Более того, единое целое они составляют с картером (полой частью). Именно на картер ставят коленчатый вал). Производители запчастей постоянно работают над формой блока цилиндров, его объемом. Конструкция блока цилиндров ДВС должна чётко учитывать все нюансы от механических потерь до теплового баланса.
  • Кривошипно-шатунный механизм (КШМ) – узел, состоящий из шатуна, цилиндра, маховика, колена, коленвала, шатунного и коренного подшипников. Именно в этом узле прямолинейное движение поршня преобразуется непосредственно во вращательное. Для большинства традиционных ДВС КШМ – незаменимый механизм. Хотя ряд инженеров пытаются найти замену и ему. В качестве альтернативы КШМ может рассматриваться, например, система кинематической схемы отбора мощности (уникальная российская технология, разработка научных сотрудников из «Сколково», направленная на погашение инерции, снижение частоты вращения, увеличение крутящего момента и КПД).
Читайте также:  Что может быть с двигателем если он нагревается а температура в норме

Газораспределительный механизм (ГРМ). Присутствует у четырехтактных двигателей (что это такое, ещё будет пояснено в блоке, посвященном принципу работы ДВС). Именно от ГРМ зависит, насколько синхронно с оборотами коленчатого вала работает вся система, как организован впрыск топливной смеси непосредственно в камеру, под контролем ли выход из нее продуктов сгорания.

Основным материалом для производства ГРМ выступает кордшнуровая или кордтканевая резина. Современное производство постоянно стремится улучшить состав сырья для оптимизации эксплуатационных качеств и повышения износостойкости механизма. Самые авторитетные производители ГРМ на рынке – Bosch, Lemforder, Contitech (все – Германия), Gates (Бельгия) и Dayco (США).

Замену ГРМ проводят через каждые 60000 — 90 000 км пробега. Всё зависит от конкретной модели авто (и регламента на неё) и особенностей эксплуатации машины.

Привод газораспределения нуждается в систематическом контроле и обслуживании. Если пренебрегать такими процедурами, ДВС может быстро выйти из строя.

  • Система питания . В этом узле осуществляется подготовка топливно-воздушной смеси: хранение топлива, его очистка, подача в двигатель.
  • Система смазки . Главные компоненты системы – трубки, маслоприемник, редукционный клапан, масляный поддон и фильтр. Для контроля системы современные решения также оснащаются датчиками указателя давления масла и датчиком сигнальной лампы аварийного давления. Главная функция системы – охлаждение узла, уменьшение силы трения между подвижными деталями. Кроме того, система смазки выполняет очищающую функцию, освобождает двигатель от нагара, продуктов, образованных в ходе износа мотора.
  • Система охлаждения . Важна для оптимизации рабочей температуры. Включает рубашку охлаждения, теплообменник (радиатор охлаждения), водяной насос, термостат и теплоноситель.

В LMS ELECTUDE системе и времени впрыска уделяется особое внимание. Любой автомеханик должен понимать, что именно от исправности системы впрыска, времени впрыска зависит способность оперативно изменять скорость движения авто. А это одна из важнейших характеристик любого мотора.

Тонкий нюанс! При изучении устройства нельзя проигнорировать и такой элемент, как датчик положения дроссельной заслонки. Датчик не является частью ДВС, но устанавливается на многих авто непосредственно рядом с ДВС.

Датчик эффективно решает такую задачу, как передача электронному блоку управления данных о положении пропускного клапана в определенный интервал времени. Это позволяет держать под контролем поступающее в систему топливо. Датчик измеряет вращение и, следовательно, степень открытия дроссельной заслонки.

А изучить устройство мотора основательно помогает дистанционный курс для самообучения «Базовое устройство двигателя внутреннего сгорания автомобиля», на платформе ELECTUDE. Принципиально важно, что каждый может пошагово продвинуться от теории, связанной с ДВС и его составными частями, до оттачивания сервисных операций по регулировке. Этому помогает встроенный LMS виртуальный симулятор.

Принцип работы двигателя

Принцип работы классических двигателей внутреннего сгорания основан на преобразовании энергии вспышки топлива — тепловой энергии, освобождённой от сгорания топлива, в механическую.

При этом сам процесс преобразования энергии может отличаться.

Самый распространённый вариант такой:

  • Поршень в цилиндре движется вниз.
  • Открывается впускной клапан.
  • В цилиндр поступает воздух или топливно-воздушная смесь. (под воздействием поршня или системы поршня и турбонаддува).
  • Поршень поднимается.
  • Выпускной клапан закрывается.
  • Поршень сжимает воздух.
  • Поршень доходит до верхней мертвой точки.
  • Срабатывает свеча зажигания.
  • Открывается выпускной клапан.
  • Поршень начинает двигаться вверх.
  • Выхлопные газы выдавливаются в выпускной коллектор.

Важно! Если используется дизельное топливо, то искра не принимает участие в запуске двигателя, дизельное топливо зажигается при сжатии само.

При этом для понимания принципа работы важно не просто учитывать физическую последовательность, а держать под контролем всю систему управления. Наглядно понять её помогает схема учебного модуля ELECTUDE.

Обратите внимание, в дистанционных курсах обучения на платформе ELECTUDE при изучении системы управления дизельным двигателем она сознательно разбирается обособленно от системы регулирования впрыска топлива. Очень грамотный подход. Многим учащимся действительно сложно сразу разобраться и с системой управления, и с системой впрыска. И для того, чтобы хорошо усвоить материал, грамотно двигаться именно пошагово.

Но вернёмся к работе самого двигателя. Рассмотренный принцип работы актуален для большинства ДВС, и он надёжен для любого транспорта, включая грузовые автомобили.

Фактически у устройств, работающих по такому принципу, работа строится на 4 тактах (поэтому большинство моторов называют четырёхтактными):

  • Такт выпуска.
  • Такт сжатия воздуха.
  • Непосредственно рабочий такт – тот самый момент, когда энергия от сгорания топлива преобразуется в механическую (для запуска коленвала).
  • Такт открытия выпускного клапана – необходим для того, чтобы отработанные газы вышли из цилиндра и освободили место новой порции смеси топлива и воздуха

4 такта образуют рабочий цикл.

При этом три такта – вспомогательные и один – непосредственно дающий импульс движению. Визуально работа четырёхтактной модели представлена на схеме.

Но работа может основываться и на другом принципе – двухтактном. Что происходит в этом случае?

  • Поршень двигается снизу-вверх.
  • В камеру сгорания поступает топливо.
  • Поршень сжимает топливно-воздушную смесь.
  • Возникает компрессия. (давление).
  • Возникает искра.
  • Топливо загорается.
  • Поршень продвигается вниз.
  • Открывается доступ к выпускному коллектору.
  • Из цилиндра выходят продукты сгорания.

То есть первый такт в этом процессе – одновременный впуск и сжатие, второй — опускание поршня под давлением топлива и выход продуктов сгорания из коллектора.

Читайте также:  Неисправности системы охлаждения двигателя ман

Двухтактный принцип работы – распространённое явление для мототехники, бензопил. Это легко объяснить тем, что при высокой удельной мощности такие устройства можно сделать очень лёгкими и компактными.

Важно! Кроме количества тактов есть отличия в механизме газообмена.

В моделей, которые поддерживают 4 такта, газораспределительный механизм открывает и закрывает в нужный момент цикла клапаны впуска и выпуска.

У решений, которые поддерживают два такта, заполнение и очистка цилиндра осуществляются синхронно с тактами сжатия и расширения (то есть непосредственно в момент нахождения поршня вблизи нижней мертвой точки).

Классификация двигателей

Двигатели разделяют по нескольким параметрам: рабочему циклу, типу конструкции, типу подачи воздуха.

Классификация двигателей в зависимости от рабочего цикла

В зависимости от цикла, описывающего термодинамический (рабочий процесс), выделяют два типа моторов:

  • Ориентированные на цикл Отто . Сжатая смесь у них воспламеняется от постороннего источника энергии. Такой цикл присущ всем бензиновым двигателям.
  • Ориентированные на цикл Дизеля . Топливо в данном случае воспламеняется не от искры, а непосредственно от разогретого рабочего тела. Такой цикл лежит в основе работы дизельных двигателей.

Чтобы работать с современными дизельными моторами, важно уметь хорошо разбираться в системе управлениям дизелями EDC (именно от неё зависит стабильное функционирование предпускового подогрева, системы рециркуляции отработанных газов, турбонаддува), особенностях системы впрыска Common Rail (CRD), механических форсунках, лямбда-зонда, обладать навыками взаимодействия с ними.

А для работы с агрегатами, работающими по циклу Отто, не обойтись без комплексного изучения свечей зажигания, системы многоточечного впрыска. Важно отличное знание принципов работы датчиков, каталитических нейтрализаторов.

И изучение дизелей, и бензодвигателей должно быть целенаправленным и последовательным. Рациональный вариант – изучать дизельные ДВС в виде модулей.

Классификация двигателей в зависимости от конструкции

  • Поршневой . Классический двигатель с поршнями, цилиндрами и коленвалом. При работе принципа ДВС рассматривалась как раз такая конструкция. Ведь именно поршневые ДВС стоят на большинстве современных автомобилей.
  • Роторные (двигатели Ванкеля) . Вместо поршня установлен трехгранный ротор (или несколько роторов), а камера сгорания имеет овальную форму. У них достаточно высокая мощность при малых габаритах, отлично гасятся вибрации. Но производителям невыгодно выпускать такие моторы. Производство двигателей Ванкеля дорогостоящее, сложно подстроиться под регламенты выбросов СО2, обеспечить агрегату большой срок службы. Поэтому современные мастера СТО при ремонте и обслуживании с такими автомобилями встречаются крайне редко. Но знать о таких двигателях также очень важно. Может возникнуть ситуация, что на сервис привезут автомобили Mazda RX-8. RX-8 (2003 по 2012 годов выпуска) либо ВАЗ-4132, ВАЗ-411М. И у них стоят именно роторные двигатели внутреннего сгорания.

Классификация двигателей по принципу подачи воздуха

Подача воздуха также разделяет ДВС на два класса :

  • Атмосферные . При движении поршня мотор затягивает порцию воздуха. Для вращения турбины и вдувания сжатого воздуха у турбокомпрессорных двигателей внутреннего сгорания используются непосредственно выхлопные газы.
  • Турбокомпрессорные . Организована дополнительная подкачка воздуха в камеру сгорания.

Для вращения турбины и вдувания сжатого воздуха у турбокомпрессорных двигателей внутреннего сгорания используются непосредственно выхлопные газы.

Атмосферные системы активно встречаются как среди дизельных, так и бензиновых моделей. Турбокомпрессорные ДВС – в большинстве своём, дизельные двигатели. Это связано с тем, что монтаж турбонаддува предполагает достаточно сложную конструкцию самого ДВС. И на такой шаг готовы пойти чаще всего производители авто премиум-класса, спорткаров. У них установка турбокомпрессора себя оправдывает. Да, такие решения более дорогие, но выигрыш есть в весе, компактности, показателе крутящего момента, уровни токсичности. Более того! Выигрыш есть и в расходе топлива. Его требуется существенно меньше.

Очень часто решения с турбокомпрессором выбирают автовладельцы, которые предпочитают агрессивный стиль езды, высокую скорость.

Преимущества ДВС

  • Удобство . Достаточно иметь АЗС по дороге или канистру бензина в багажнике – и проблема заправки двигателя легко решаема. Если же на машине установлен электромотор, зарядка доступна пока ещё не во всех местах.
  • Высокая скорость заправки двигателя топливом .
  • Длительный ресурс работы . Современные двигатели внутреннего сгорания легко работают в заявленный производителем период (в среднем 100-150 тыс. км. пробега), а некоторые и 300-350 тыс. км пробега. Впрочем, мировой рекордсмен – пробег и вовсе

4 800 000 км. И здесь нет лишних нулей. Такой рекорд установлен на двигателе Volvo» P1800. Единственное, за время работы двигатель два раза проходил капремонт.

  • Компактность . Двигатели внутреннего сгорания существенно компактнее, нежели двигатели внешнего сгорания.
  • Недостатки ДВС

    При использовании двигателя внутреннего сгорания нельзя организовать работу оборудования по замкнутому циклу, а, значит, организовать работу в условиях, когда давление существенно превышает атмосферное.

    Большинство ДВС работает за счёт использования невозобновляемых ресурсов (бензина, газа). И исключение – машины, работающие на биогазе, этиловом спирте (на практике встречается редко, так как при использовании такого топлива невозможно добиться высоких мощностей и скоростей).

    Существует тесная зависимость работы ДВС от качества топлива. Оно должно обладать определённым определенным цетановым и октановым числами (характеристиками воспламеняемости дизельного топлива, определяющими период задержки горения рабочей смеси и детонационной стойкости топлива), плотностью, испаряемостью.

    Автомеханики называют ДВС сердцем авто, инженеры модернизируют ГРМ, а производители бензина не беспокояться о том, что все перейдут на электротранспорт.

    Источник

    Adblock
    detector