Экологические характеристики двигателей внутреннего сгорания

Экологические характеристики двигателей внутреннего сгорания

Современные масштабы выпуска поршневых ДВС и их использование привели к тому, что стало значительным их воздействие на окружающую среду. Условия существования жизни на Земле возможны, как известно, в очень узких пределах изменения физических и химических характеристик окружающей среды. Размеры выбросов от ДВС таковы, что они существенно могут менять концентрации химических веществ, входящих в состав воздуха, воды, почв, которые становятся опасными для жизни биологических существ и прежде всего для человека.

Учение об экологических характеристиках ДВС следует понимать как раздел промышленной экологии, который рассматривает воздействие техники на природу. Это воздействие может быть от единичного двигателя — локальное, или от всей совокупности эксплуатируемых ДВС совместно со всеми элементами инфраструк­туры, обеспечивающей их эксплуатацию,— глобальное.

Оценки совокупного воздействия двигателя на окружающую среду возможны. Автомобили и двигатели образуют транспортные потоки, которые перемещаются по улично-дорожной сети. Выделив участок территории, получим транспортный поток плотностью Р авт./км или интенсивностью I авт./ч, для которого можно получить изменение характеристики множества автомобилей, которые перемещаются по выделенной территории. Зная топливно-экономическую характеристику автомобиля (двигателя), можно найти расход топлива автомобильным потоком на выделенной территории. По расходу топлива возможны оценки токсичных выбросов автомо­бильным потоком, что и определяет его воздействие на окружающую среду. По данной схеме возможны оценки экологического воздействия любого автомобильного потока на автомагистрали или уличной сети.

К экологическим показателям ДВС следует отнести такие, которые характеризуют прямое и косвенное воздействие на окружающую среду. В соответствии со вторым законом термодинамики ДВС всегда будет выбрасывать теплоту в окружающее пространство. Чем выше КПД двигателя, чем лучше его топливная экономичность, тем выше его экологические качества.

Цикличность работы ДВС и процесс сгорания топлива предполагают использование кислорода воздуха и химические превращения веществ в цилиндре ДВС с образованием вредных веществ, а затем их выброс в атмосферу.

Кроме тепловой ДВС выбрасывает в окружающее пространство механическую энергию — акустическое излучение (вибрации и шум).

Таким образом, совокупность показателей, характеризующих тепловое и вещественное взаимодействие работающего ДВС с окружающей средой; акустическое излучение (шум), вибрации; количества конструкционных и эксплуатационных материалов, расходуемых при изготовлении и использовании ДВС; количества энергии, затрачиваемые при производстве и использовании двигателей и материалов, следует понимать как определяющую качество экологической чистоты ДВС.

Рис.43.

Схема, приведенная на рис. 43, показывает в общем виде взаимодействие ДВС с окружающей средой.

Прежде всего следует отметить техногенное воздействие на окружающую среду при создании двигателя. Начало его имеет место при разведке и добыче полезных ископаемых, идущих на изготовление конструкционных и эксплуатационных материалов, затем собственно производство двигателей. Технологические процессы изготовления также сопровождаются вредными выбросами, которые концентрируются главным образом в пределах заводских территорий. Оценка экологических качеств технологических процессов изготовления (литье, ковка, механическая обработка, сборка) и их сравнительный анализ — важная самостоятельная задача, здесь же ограничимся самой общей характеристикой, каковой является величина затрат энергии, которые имеют место при производстве единицы материала (чугуна, стали, бензина) или собственно двигателя.

Сведения о величине выбросов некоторых веществ при производстве основных конструкционных и эксплуатационных матери­алов (металлов, пластмасс, резинотехнических изделий), топлив и масел приведены в табл. 4. Все величины выбросов удельные, т. е. они отнесены к единице массы материала. Данные, содержащиеся в табл. 4, позволяют делать сравнительные оценки совершенства существующих и проектируемых конструкций ДВС, а также дать заключения о том, какова мера воздействия на окружающую среду при производстве материалов для изготовления двигателя и обеспечения его использования.

Естественно, при этом необходимо знать расходы материалов на изготовление двигателя; для существующих двигателей сведения о фактических расходах материалов известны. При проектировании в первом приближении достаточно знать массу двигателя.

Читайте также:  Как узнать количество масла в двигателе
Рис.44

Размеры общих тепловых выбросов можно характеризовать данными, приведенными на рис. 50. На рисунке дано общее количество энергии 2т, использованное человеком, а также общее количество автомобилей iVa, эксплуатировавшихся в мире в 1950—2000 гг. (рис. 50, б), и расход нефти, газа и угля (рис. 50, а). Естественно, количество работающих поршневых двигателей существенно больше, чем количество автомобилей, так как следует учитывать мото­технику, сельскохозяйственные и дорожно-строительные машины, стационарные установки, суда и самолеты с поршневыми двигателями. В этом случае общее количество ДВС приближается к 1 млрд.

Не будет грубой ошибкой считать, что вся тепловая энергия сжигаемого в ДВС топлива выделяется в окружающую среду, что приводит к ее подогреву.

Одновременно расходуется кислород воздуха, а также выбрасываются ОГ, большую долю в которых по массе составляет диоксид углерода СО2. Диоксид углерода экологически опасен, так как в совокупности с другими химическими веществами он препятствует излучению теплоты земным шаром в окружающее пространство, что приводит к появлению «парникового» эффекта — повышению средней температуры атмосферы.

Снизить выбросы СО2 позволяет переход на использование в качестве топлива природного сжатого газа. Снижение выбросов С02 возможно также при осуществлении непосредственно на двигателе конверсии природного газа с водяным паром и СО2, частично извлекаемым из ОГ, с одновременным использованием их теплоты и энергии, уходящей в охлаждающую среду, так как конверсионные реакции являются эндотермическими. При такой реализации конверсии теплоиспользование в ДВС получается более высоким, так как возникающий в результате конверсии синтезированный газ имеет более высокую удельную теплоту сгорания, чем исходное газовое топливо. Такие же положительные эффекты дает использование по аналогичной схеме спиртового топлива — метанола. Метанол можно получать, например, из биомассы, которая выращивается для этих целей. При выращивании зеленой массы СО2 поглощается из атмосферы, а при снижении метанола в двигателе СО2 выбрасывается в атмосферу. Поэтому в таком цикле не происходит увеличение концентрации СО2 в окружающей среде.

Следующим шагом по уменьшению выбросов СО2 является использование водорода в качестве моторного топлива, при его сжигании в ОГ двигателя СО2 отсутствует.

В ОГ содержится очень большое количество химических веществ (до 300), из которых главное внимание уделяется так называемым токсичным составляющим СО, СН, N0 и саже (твердым частицам). Токсичными называют вещества, оказывающие отравляющее действие на организм человека и окружающую среду.

Очень часто вся проблема экологического совершенства ДВС сводится к поиску способов снижения содержания этих токсичных веществ в ОГ. Безусловно, они вредны и их выбросы нужно снизить, но этим задача экологического совершенствования ДВС не исчерпывается. В ОГ содержатся также канцерогенные вещества ПАУ (полициклические ароматические углеводороды), соединения серы и свинца и множество других составляющих, которые по степени токсичности опаснее, чем СО, СН и N0х.

Помимо ОГ источниками токсичности двигателей являются также картерные газы и испарение топлива в атмосферу. Наибольшее выделение токсичных веществ в атмосферу происходит с ОГ, поэтому основное внимание уделяется уменьшению токсичности ОГ.

Концентрацию токсичных компонентов в сухих ОГ оценивают в % (об.), миллионных долях по объему (млн -1 ) и реже в мг/л.

Диапазоны изменения количества токсичных компонентов в ОГ приведены табл. 5

Таблица 5

Значимость отдельных компонентов (в порядке убывания) для общей токсичности ОГ с учетом действующих норм на предельно допустимые концентрации следующая: соединения свинца (Pb), NOх ПАУ, СО и СН. В соответствии с действующими в Российской Федерации нормами на предельнодопустимые концентрации (ПДК) относительная токсичность ряда составляющих ОГ располагается следующим образом: СО; NOX; СН; РbСН; С20Н12 (бенз-α-пи-рен)= 1:40:1,25:22000:1250000.

Читайте также:  Как сделать свою модель машины с двигателем

Источник

Экологические характеристики двигателей внутреннего сгорания

Основная причина загрязнения воздуха заключается в неполном и неравномерном сгорании топлива. Всего 15% его расходуется на движение автомобиля, а 85% «летит на ветер». К тому же камера сгорания автомобильного двигателя — это своеобразный химический реактор, синтезирующий ядовитые вещества и выбрасывающий их в атмосферу. Даже невинный азот из атмосферы, попадая в камеру сгорания, превращается в ядовитые оксиды азота. Основными токсичными веществами, загрязняющими атмосферу, в отработанных газах двигателей с воспламенением от искры являются оксид углерода СО, оксиды азота NO* и углеводороды С„Нт. Кроме того, в случае применения этилированного бензина образуется очень опасный загрязнитель — соединения свинца. И наконец, особое место занимают канцерогенные вещества, основным представителем которых в отработанных газах является бенз(а)пирен. Из 10 основных загрязнителей воздушной среды, включенных в предложенную ООН таблицу, оксид углерода СО стоит на втором месте. Причиной образования оксида углерода и углеводородов в отработанных газах является неполное сгорание топлива, которое особенно велико при пользовании богатой рабочей смесью, поступающей в цилиндр двигателя. Оксиды азота образуются в процессе сгорания топлива в зонах с высокой температурой.

Процесс окисления азота становится заметным лишь при нагревании до температуры более 1700 °С. Столь высокая температура имеет место в зонах, где сгорание происходит при давлении, близком к максимальному в цикле. Поэтому образование оксидов азота идет тем интенсивнее, чем выше максимальное давление цикла. Кроме того, на количестве образовавшихся оксидов азота сказывается наличие свободного кислорода, который ускоряет окисление. Поэтому наибольшее содержание их наблюдается при слегка обедненных смесях, когда температура горения достаточно высока и имеется достаточное количество свободного кислорода. Обеднение смеси (с этого уровня) снижает температуру горения, а обогащение — концентрацию свободного кислорода. В обоих случаях имеет место снижение концентрации оксидов азота. Оксиды азота (в бензиновых двигателях 77% составляет N0, в небольшом количестве присутствуют NO2 и N2O5), попадая в организм человека, соединяются с водой и образуют азотсодержащие кислоты. Симптомы отравления оксидами азота проявляются в виде кашля, удушья, возможен нарастающий отек легких.

Наименее изучены закономерности и причины образования канцерогенных веществ, в частности бенз(а)пирена. Последний является представителем конденсированной ароматики, молекула которого включает в себя пять связанных бензольных колец. Трудно предположить возможность образования столь сложной молекулы из веществ, входящих в состав бензина, а тем более природного газа. Наиболее конденсированная ароматика, входящая в состав бензина в микроколичествах, представлена нафталином и его производными, образующими лишь сдвоенное бензольное кольцо. Газовое же топливо вообще не содержит ароматических углеводородов. Наиболее вероятный путь образования бенз(а)пирена — конденсация ароматических соединений, присутствующих в моторном масле. Этот процесс протекает в сравнительно узком диапазоне температур (600—650 °С) в восстановительной среде, в присутствии железа в качестве катализатора. Отмеченная совокупность условий может иметь место на стенках цилиндров двигателя, при этом основная часть образующегося продукта должна смываться маслом и попадать в картер двигателя, так как в картерных газах содержание бенз(а)пирена более высокое, чем в отработанных. Более того, усилится вентиляция картера за счет отвода картерных газов во впускной трубопровод двигателя, что приведет к увеличению содержания канцерогенных веществ в отработанных газах.

Рекламные предложения на основе ваших интересов:

Рис. 1. Токсические регулировочные характеристики при работе двигателя на бензине и газовом топливе. Содержание в отработанных газах оксидов углерода СО и азота NOx и углеводородов.
1 — газовое топливо; 2 — бензин.

Читайте также:  Как правильно мерить компрессию в двигателе ваз 2110 16 клапанов

Особенности образования токсичных веществ в двигателях внутреннего сгорания отражаются на токсических регулировочных характеристиках бензинового и газового двигателей. В качестве газового топлива используется метановый природный газ. Эти характеристики мало отличаются одна от другой. Особенность обеих характеристик — наличие СО при стехиометрическом составе (а= 1). Причем концентрация этого продукта неполного сгорания доходит до 1% при работе бензинового и 0,5% при работе газового двигателей. Это означает, что для обоих видов топлива при стехиометрическом составе смеси имеет место недогорание, которое для газового топлива несколько меньше, чем для бензина. Тем не менее газовый двигатель в отношении этого компонента имеет существенные преимущества. Пределы воспламенения газовоздушной смеси смещены в сторону бедных составов, т. е. рабочая область газового двигателя лежит в зоне малых содержаний СО.

Иная картина наблюдается при образовании оксидов азота. На рис. 1 показано изменение их содержания в зависимости от коэффициента избытка воздуха (соответственно для бензинового и газового двигателей). Обе кривые имеют острый максимум в области бедных смесей, однако максимум для газового двигателя смещен в сторону бедных смесей и имеет примерно в 2 раза более низкое значение. Оба максимума приблизительно соответствуют по положению пределу эффективного обеднения, вследствие чего регулирование двигателя на максимум экономичности соответствует максимальному выбросу оксидов азота. Однако для газового двигателя этот выброс в 2 раза ниже. Кроме того, газовый двигатель допускает широкие возможности для регулирования за пределом эффективного обеднения, т. е. в области, где оксиды азота и углерода присутствуют в очень малых количествах. Таким образом, оптимизация регулировок газового двигателя позволяет снизить поступление загрязнителей в атмосферу в несколько раз (по сравнению с бензиновым двигателем).

Выброс углеводородов в пересчете на углерод газовым двигателем находится примерно на том же уровне, что и бензиновым. Однако состав углеводородов в отработанных газах бензинового и газового двигателей различен. Так, в отработанных газах бензинового двигателя содержатся преимущественно этан и этилен, а у газового двигателя, работающего на метане, основу составляет метан. Эти обстоятельства играют существенную роль в экологии, поскольку сами по себе не представляют серьезной опасности для здоровья. Их вредное воздействие состоит в образовании смога в результате окисления оксидами азота, интенсифицируемого ультрафиолетовой частью солнечной радиации.

Из всех предельных углеводородов метан обладает наибольшей устойчивостью к этому процессу. Поэтому углеводородный выброс газового двигателя наименее опасен. Поступление углеводородов в атмосферный воздух происходит не только при работе автомобилей, но и при розливе бензина. Каждый водитель знает: вылить из шланга весь бензин в топливный бак практически невозможно, какая-то часть его из ствола пистолета обязательно выплеснется на землю. И с каждым годом количество поступающих в атмосферу углеводородов будет расти, а значит будут увеличиваться и вредные испарения в атмосферу. Лишь 300 г бензина, пролитого при заправке автомобиля, загрязняет 200 тыс. м3 воздуха.

Согласно должностной инструкции АГНКС по заправке автомобилей сжатым газом оператор и заправщик обслуживают автомобиль без участия водителя, тем самым выброс газа доведен до минимума. В нашей стране разработаны соответствующие государственные стандарты, направленные на контроль и ограничение количества вредных компонентов в выхлопных газах. Введены в действие ГОСТ 17.2.2.03—87 «Охрана природы. Атмосфера. Нормы и методы измерений содержания окиси углерода и углеводородов в отработавших газах автомобилей с бензиновыми двигателями. Требования безопасности» и ГОСТ 21393—75 «Автомобили с дизелями. Дымность отработавших газов. Нормы и методы измерений. Требования безопасности». Разработка нормирующих Документов — сложный процесс, включающий в себя анализ технических, экономических, биологических, медицинских и других факторов.

Источник

Adblock
detector