Двигатели постоянного тока при низких температурах

Токовые перегрузки и их влияние на работу и срок службы электродвигателей

Анализ повреждений асинхронных двигателей показывает, что основной причиной их выхода из строя является разрушение изоляции из-за перегрева.

Перегрузка электротехнического изделия (устройства) — превышение фактического значения мощности или тока электротехнического изделия (устройства) над номинальным значением. (ГОСТ 18311-80).

Температура нагрева обмоток электродви гателя зависит от теплотехнических характеристик двигателя и параметров окружающей среды. Часть выделяемого в двигателе тепла идет на нагрев обмоток, а остальное отдается в окружающую среду. На процесс нагрева влияют такие физические параметры, как теплоемкость и теплоотдача .

В зависимости от теплового состояния электродвигателя и окружающего воздуха степень их влияния может быть различной. Если разность температур двигателя и окружающей среды невелика, а выделяемая энергия значительна, то ее основная часть поглощается обмоткой, сталью статора и ротора, корпусом двигателя и другими его частями. Происходит интенсивный рост температуры изоляции . По мере нагрева все больше проявляется влияние теплоотдачи. Процесс устанавливается после достижения равновесия между выделяемым теплом и теплом, отдаваемым в окружающую среду.

Повышение тока сверх допустимого значения не сразу приводит к аварийному состоянию . Требуется некоторое время, прежде чем статор и ротор нагреются до предельной температуры. Поэтому нет необходимости в том, чтобы защита реагировала на каждое превышение тока. Она должна отключать машину только в тех случаях, когда возникает опасность быстрого износа изоляции.

С точки зрения нагрева изоляции большое значение имеют величина и длительность протекания токов, превышающих номинальное значение. Эти параметры зависят прежде всего от характера технологического процесса.

Перегрузки электродвигателя технологического происхождения

Перегрузки электродвигателя, вызванные периодическим увеличением момента на валу рабочей машины. В таких станках и установках мощность электродвигателя все время изменяется. Трудно заметить сколько-нибудь длительный промежуток времени, в течение которого ток оставался бы неизменным по величине. На валу двигателя периодически возникают кратковременные большие моменты сопротивления, создающие броски тока.

Такие перегрузки обычно не вызывают перегрева обмоток электродвигателя, имеющих сравнительно большую тепловую инерцию. Однако при достаточно большой длительности и неоднократной повторности создается опасный нагрев электродвигателя. Защита должна «различать» эти режимы. Она не должна реагировать на кратковременные толчки нагрузки.

В других машинах могут возникать сравнительно небольшие, но длительные перегрузки. Обмотки электродвигателя постепенно нагреваются до температуры, близкой к предельно допустимому значению. Обычно электродвигатель имеет некоторый запас по нагреву, и небольшие превышения тока, несмотря на продолжительность действия, не могут создать опасной ситуации. В этом случае отключение не обязательно. Таким образом, и здесь защита электродвигателя должна «различать» опасную перегрузку от неопасной.

Аварийные перегрузки электродвигателя

Кроме перегрузок технологического происхождения , могут быть аварийные перегрузки , возникающие по другим причинам (авария в питающей линии, заклинивание рабочих органов, снижение напряжения и др.). Они создают своеобразные режимы работы асинхронного двигателя и выдвигают свои требования к средствам защиты . Рассмотрим поведение асинхронного двигателя в характерных аварийных режимах.

Перегрузки при длительном режиме работы с постоянной нагрузкой

Обычно электродвигатели выбирают с некоторым запасом по мощности. Кроме того, большую часть времени машины работают с недогрузкой. В результате ток двигателя часто значительно ниже номинального значения. Перегрузки возникают, как правило, при нарушениях технологии, поломках, заедании и заклинивании в рабочей машине.

Такие машины, как вентиляторы, центробежные насосы, ленточные и шнековые транспортеры, имеют спокойную постоянную или слабо изменяющуюся нагрузку. Кратковременные изменения подачи материала практически не влияют на нагрев электродвигателя. Их можно не принимать во внимание. Иное дело, если нарушения нормальных условий работы остаются на длительное время.

Читайте также:  Почему нет компрессии в двигателе ваз 2110 8 клапанов

Большинство электроприводов имеет определенный запас мощности. Механические перегрузки прежде всего вызывают поломки деталей машины. Однако, принимая во внимание случайный характер их возникновения, нельзя быть уверенным, что при определенных обстоятельствах окажется перегруженным и электродвигатель. Например, это может случиться с двигателями шнековых транспортеров. Изменение физико-механических свойств транспортируемого материала (влажность, крупность частиц и т. д.) немедленно отражается на мощности, требуемой на его перемещение. Защита должна отключать электродвигатель при возникновении перегрузок, вызывающих опасный перегрев обмоток.

С точки зрения влияния длительных превышений тока на изоляцию следует различать два вида перегрузок по величине: сравнительно небольшие (до 50%) и большие (более 50%).

Действие первых проявляется не сразу, а постепенно, в то время как последствия вторых проявляются через короткое время. Если превышение температуры над допустимым значением невелико, то старение изоляции происходит медленно. Небольшие изменения в структуре изолирующего материала накапливаются постепенно. По мере возрастания температуры процесс старения значительно ускоряется.

Считают, что перегрев сверх допустимого на каждые 8 — 10°С сокращает срок службы изоляции обмоток электродвигателя в два раза. Таким образом, перегрев на 40°С сокращает срок службы изоляции в 32 раза! Хоть это и много, но обнаруживается оно после многих месяцев эксплуатации.

При больших перегрузках (более 50%) изоляция быстро разрушается под действием высокой температуры.

Для анализа процесса нагрева воспользуемся упрощенной моделью двигателя. Повышение тока вызывает увеличение переменных потерь. Обмотка начинает нагреваться. Температура изоляции изменяется в соответствии с графиком на рисунке. Величина установившегося превышения температуры зависит от величины тока.

Через некоторое время после возникновения перегрузки температура обмоток достигает допустимого для данного класса изоляции значения. При больших перегрузках оно будет короче, при малых — длиннее. Таким образом, каждому значению перегрузки будет соответствовать свое допустимое время, которое можно считать безопасным для изоляции.

Зависимость допустимой длительности перегрузки от ее величины называется перегрузочной характеристикой электродвигателя . Теплофизические свойства электродвигателей разных типов имеют некоторые отличия, также отличаются и их характеристики. На рисунке сплошной линией показана одна из таких характеристик.

Перегрузочная характеристика электродвигателя (сплошная линия) и желаемая характеристика защиты (пунктирная линия)

Из приведенной характеристики можно сформулировать одно из основных требований к защите перегрузок, действующей в зависимости от тока. Она должна срабатывать в зависимости от величины перегрузки. Э дает возможность исключить ложные срабатывания при неопасных бросках тока, возникающие, например, при пуске двигателя. Защита должна срабатывать только при попадании в область недопустимых значений тока и длительности его протекания. Ее желаемая характеристика, показанная на рисунке пунктирной линией, должна всегда располагаться под перегрузочной характеристикой двигателя.

На работу защиты влияет ряд факторов (неточность настройки, разброс параметров и др.), в результате действия которых наблюдаются отклонения от средних значений времени срабатывания. Поэтому пунктирную кривую на графике следует рассматривать как некую среднюю характеристику. Для того чтобы в результате действия случайных факторов характеристики не пересеклись, что вызовет неправильное отключение двигателя, необходимо обеспечить определенный запас. Фактически приходится иметь дело не с отдельной характеристикой, а с защитной зоной, учитывающей разброс времени срабатывания защиты.

С точки зрения точного действия защиты электродвигателя желательно, чтобы обе характеристики были по возможности близки одна к другой. Это позволит избежать ненужное отключение при перегрузках, близких к допустимым. Однако при наличии большого разброса обеих характеристик достигнуть этого невозможно. Для того чтобы не попасть в зону недопустимых значений тока при случайных отклонениях от расчетных параметров, необходимо обеспечить определенный запас.

Характеристика защиты должна располагаться на некотором расстоянии от перегрузочной характеристики двигателя, чтобы исключить их взаимное пересечение. Но при этом получается проигрыш в точности действия защиты электродвигателя.

Читайте также:  Как чипануть двигатель шкоды

В области токов, близких к номинальному значению, появляется зона неопределенности. При попадании в эту зону нельзя точно сказать, сработает защита или нет.

Такой недостаток отсутствует у защиты, действующей в функции температуры обмоток. В отличие от токовой защиты она действует в зависимости от причины, вызывающей старение изоляции, ее нагрева. При достижении опасной для обмотки температуры она отключает двигатель независимо от причины, вызвавшей нагрев. Это — одно из главных достоинств температурной защиты .

Однако не следует преувеличивать недостаток токовой защиты. Дело в том, что двигатели имеют определенный запас по току. Номинальный ток электродвигателя всегда ниже того тока, при котором температура обмоток достигает допустимого значения. Его устанавливают, руководствуясь экономическими расчетами. Поэтому при номинальной нагрузке температура обмоток двигателя ниже допустимого значения. За счет этого и создается тепловой резерв двигателя, который в определенной степени компенсирует недостаток тепловых реле.

Многие факторы, от которых зависит тепловое состояние изоляции, имеют случайные отклонения. В связи с этим уточнения характеристик не всегда дают желаемый результат.

Перегрузки при переменном длительном режиме работы

Некоторые рабочие органы и механизмы создают нагрузку, изменяющуюся в больших пределах, как, например, в машинах для дробления, измельчения и других аналогичных операций. Здесь периодические перегрузки сопровождаются недогрузками вплоть до работы на холостом ходу. Каждое увеличение тока, взятое в отдельности, не приводит к опасному росту температуры. Однако, если их много и они повторяются достаточно часто, действие повышенной температуры на изоляцию быстро накапливается.

Процесс нагрева электродвигателя при переменной нагрузке отличается от процесса нагрева при постоянной или слабо выраженной переменной нагрузке. Различие проявляется как в ходе изменения температуры, так и в характере нагрева отдельных частей машины.

Вслед за изменениями нагрузки изменяется и температура обмоток. Из-за тепловой инерции двигателя колебания температуры имеют меньший размах. При достаточно высокой частоте нагрузки температуру обмоток можно считать практически неизменяющейся. Такой режим работы будет эквивалентен длительному режиму с постоянной нагрузкой. При низкой частоте (порядка сотых долей герца и ниже) колебания температуры становятся ощутимыми. Периодические перегревы обмотки могут сократить срок службы изоляции.

При больших колебаниях нагрузки с низкой частотой электродвигатель постоянно находится в переходном процессе. Температура его обмотки изменяется вслед за колебаниями нагрузки. Так как отдельные части машины имеют разные теплофизические параметры, то каждая из них нагревается посвоему.

Протекание тепловых переходных процессов при изменяющейся нагрузке — явление сложное и не всегда поддается расчету. Поэтому о температуре обмоток двигателя нельзя судить по току, протекающему в данный момент времени. Ввиду того, что отдельные части электродвигателя нагреваются по-разному, внутри электродвигателя происходят перетоки тепла из одной ее части в другие. Может быть и так, что после отключения электродвигателя температура обмоток статора будет расти за счет тепла, поступающего от ротора. Таким образом, величина тока может и не отражать степень нагрева изоляции. Следует также принять во внимание, что при некоторых режимах ротор будет нагреваться более интенсивно, а охлаждаться менее интенсивно, чем статор.

Сложность процессов теплообмена затрудняет контроль нагрева электродвигателя . Даже непосредственное измерение температуры обмоток может при некоторых условиях дать погрешность. Дело в том, что при неустановившихся тепловых процессах температура нагрева различных частей машины может быть разной и измерение в одной точке не может дать истинной картины. Тем не менее по сравнению с другими методами измерение температуры обмотки дает более точный результат.

Повторно-кратковременный режим работы можно отнести к наиболее неблагоприятному с точки зрения действия защиты. Периодическое включение в работу предполагает возможность кратковременной перегрузки двигателя. При этом величина перегрузки должна быть ограничена по условию нагрева обмоток не выше допустимого значения.

Читайте также:  Как определить поломку турбины бензинового двигателя

Защита, «следящая» за состоянием нагрева обмотки, должна получать соответствующий сигнал. Так как в переходных режимах ток и температура могут не соответствовать друг другу, то защита, действие которой основано на измерении тока, не может выполнять свою роль должным образом.

Источник

Какая максимальная температура двигателя?

Электродвигатель греется, когда работает. Это общеизвестный факт.

Если правильно выбран режим нагрузки и охлаждение, двигатель может работать годами.

Но практически имеет ценность только вопрос, какая температура является критичной, а при какой можно не беспокоиться. Рассматривать будем только асинхронные трехфазные электродвигатели, как наиболее широко распространенные.

Для начала посмотрим, что говорят официальные источники.

Что греется в электродвигателе

Основной источник нагрева — обмотка статора . Как и любая катушка, намотанная проводом, она греется. И максимальная температура нагрева ограничена температурной стойкостью изоляции обмоточного провода.

Термическая стойкость провода характеризуется параметром класс нагревостойкости. По этим классам максимальные температуры обозначаются буквами:

Y, A, E, B — эти классы не терпят температуры выше 130 гр, сейчас двигателя с такими обмотками практически не выпускаются.

F — 155 гр — именно с таким классом изготавливается большинство современных двигателей

Н — 180 гр — это уже двигатели спец.исполнения, которые работают в тяжелых условиях — например, в горячих цехах и под палящим солнцем.

Температуры максимума по классам в разных справочниках могут разниться, это зависит от скорости нагрева и условий применения.

Второй источник внутреннего нагрева — подшипники . Подшипники будут греться только тогда, когда они неисправны, либо работают в запредельных режимах.

Причины перегрева

Если с подшипниками всё понятно, то электрических причин может быть много. Вот несколько причин нагрева двигателя:

  1. перекос фаз
  2. пониженное или повышенное напряжение
  3. обрыв фазы (питания или внутри двигателя)
  4. межвитковое замыкание
  5. замыкание на корпус
  6. поломка крыльчатки (отсутствие охлаждения)
  7. высокая температура рабочей среды
  8. неправильная схема подключения
  9. перегрузка в механике привода

В любом случае, допускать двигатель до перегрева не должен мотор-автомат ( автомат защиты двигателя ), тепловое реле, позистор.

Как измерить температуру двигателя?

Есть несколько способов.

  1. Рука . Да, рука терпит температуру до 60 гр, дальше — больно. Проверено на практике
  2. Нос . Если температура больше 80 гр, начитает «пахнуть жареным». Начинает интенсивно испаряться масло, пахнуть пыль, краска, и т.п.
  3. Термометр с контактным датчиком . Более точный способ, но может быть проблематично или опасно залезть в некоторые места
  4. Термометр с дистанционным датчиком (ИК) . Более простой и безопасный способ, но бывает большая погрешность.
  5. Тепловизор . Лучший способ для оперативной проверки. Сразу видна вся картина.
  6. Встроенные датчики. Это могут быть термопары, терморезисторы или позисторы. Можно завести на температурный контроллер или индикатор, а можно — на пороговое устройство, выключающее двигатель по аварии. Лучший способ для постоянного и оперативного контроля температуры двигателя.

Какой способ контроля используете вы?

Какая температура критичная?

Безусловно, при температуре корпуса двигателя +30 он будет работать лучше и дольше, чем при +100 гр. Но и та, и другая температура допускается.

Но до +100 гр. можно спокойно работать и не беспокоиться, а после — нужно обязательно выяснять причину и принимать меры.

Из этого вытекает правило — электрику, ответственному за электрохозяйство, нужно регулярно делать обходы и проверять состояние двигателей и оборудования в целом.

Как у вас с этим на заводе? Расскажите в комментариях!

Статьи в тему двигателей

Если дочитали до сюда, значит тема двигателей вам интересна. Вот, что у меня ещё есть на Дзене:

Источник

Adblock
detector