Двигатели для работы на одной обмотке

Однофазный асинхронный двигатель: как устроен и работает

Само название этого электротехнического устройства свидетельствует о том, что электрическая энергия, поступающая на него, преобразуется во вращательное движение ротора. Причем прилагательное «асинхронный» характеризует несовпадение, отставание скоростей вращения якоря от магнитного поля статора.

Слово «однофазный» вызывает неоднозначное определение. Связано это с тем, что термин «фаза» в электрике определяет несколько явлений:

сдвиг, разность углов между векторными величинами;

потенциальный проводник двух, трех или четырехпроводной электрической схемы переменного тока;

одну из обмоток статора или ротора трехфазного двигателя либо генератора.

Поэтому сразу уточним, что однофазным электродвигателем принято называть тот, который работает от двухпроводной сети переменного тока, представленной фазным и нулевым потенциалом. Количество обмоток, вмонтированных в различных конструкциях статоров, на это определение не влияют.

Конструкция электродвигателя

По своему техническому устройству асинхронный двигатель состоит из:

1. статора — статической, неподвижной части, выполненной корпусом с расположенными на нем различными электротехническими элементами;

2. ротора, вращаемого силами электромагнитного поля статора.

Механическое соединение этих двух деталей выполнено за счет подшипников вращения, внутренние кольца которых посажены на подогнанные гнезда вала ротора, а внешние вмонтированы в защитные боковые крышки, закрепляемые на статоре.

Ротор

Его устройство у этих моделей такое же, как у всех асинхронных двигателей: на стальном валу смонтирован магнитопровод из шихтованных пластин на основе мягких сплавов железа. На его внешней поверхности выполнены пазы, в которые вмонтированы стержни обмоток из алюминия или меди, закороченные по концам на замыкающие кольца.

В обмотке ротора протекает электрический ток, индуцируемый магнитным полем статора, а магнитопровод служит для хорошего прохождения создаваемого здесь же магнитного потока.

Отдельные конструкции ротора у однофазных двигателей могут быть выполнены из немагнитных или ферромагнитных материалов в форме цилиндра.

Статор

Конструкция статора также представлена:

Его основное назначение заключается в генерировании неподвижного или вращающегося электромагнитного поля.

Статорная обмотка обычно состоит из двух контуров:

У самых простых конструкций, предназначенных для ручной раскрутки якоря, может быть выполнена всего одна обмотка.

Принцип работы асинхронного однофазного электрического двигателя

С целью упрощения изложения материала представим, что обмотка статора выполнена всего одним витком петли. Ее провода внутри статора разносят по кругу на 180 угловых градусов. По ней проходит переменный синусоидальный ток, имеющий положительные и отрицательные полуволны. Он создает не вращающееся, а пульсирующее магнитное поле.

Как возникают пульсации магнитного поля

Разберем этот процесс на примере протекания положительной полуволны тока в моменты времени t1, t2, t3.

Она проходит по верхней части токопровода по направлению к нам, а по нижней — от нас. В перпендикулярной плоскости, представленной магнитопроводом, вокруг проводника возникают магнитные потоки Ф.

Изменяющиеся по амплитуде токи в рассматриваемые моменты времени создают разные по величине электромагнитные поля Ф1, Ф2, Ф3. Поскольку ток в верхней и нижней половине один и тот же, но виток изогнут, то магнитные потоки каждой части направлены встречно и уничтожают действие друг друга. Определить это можно по правилу буравчика или правой руки.

Как видим, при положительной полуволне вращения магнитного поля не наблюдается, а происходит только его пульсация в верхней и нижней части провода, которая еще и взаимно уравновешивается в магнитопроводе. Этот же процесс происходит при отрицательном участке синусоиды, когда токи изменяют направление на противоположное.

Поскольку вращающееся магнитное поле отсутствует, то и ротор останется неподвижным, ибо нет сил, приложенных к нему для начала вращения.

Как создается вращение ротора в пульсирующем поле

Если придать ротору вращение, хотя бы рукой, то он будет продолжать это движение. Для объяснения этого явления покажем, что суммарный магнитный поток изменяется по частоте синусоиды тока от нуля до максимального значения в каждом полупериоде (с изменением направления на противоположное) и состоит из двух частей, образуемых в верхней и нижней ветвях, как показано на рисунке.

Магнитное пульсирующее поле статора состоит из двух круговых с амплитудой Фмакс/2 и двигающихся в противоположных направлениях с одной частотой.

В этой формуле обозначены:

nпр и nобр частоты вращения магнитного поля статора в прямом и обратном направлениях;

n1 — скорость вращающегося магнитного потока (об/мин);

p — число пар полюсов;

f — частота тока в обмотке статора.

Теперь рукой придадим вращение двигателю в одну сторону, и он сразу подхватит движение за счет возникновения вращающегося момента, вызванного скольжением ротора относительно разных магнитных потоков прямого и обратного направлений.

Примем, что магнитный поток прямого направления совпадает с вращением ротора, а обратный, соответственно, будет противоположен. Если обозначить через n2 частоту вращения якоря в об/мин, то можно записать выражение n2

Например, электродвигатель работает от сети 50 Гц с n1=1500, а n2=1440 оборотов в минуту. Его ротор имеет скольжение относительно магнитного потока прямого направления Sпр=0,04 и частоту тока f2пр=2 Гц. Обратное же скольжение Sобр=1,96, а частота тока f2обр=98 Гц.

На основании закона Ампера при взаимодействии тока I2пр и магнитного поля Фпр появится вращающий момент Мпр.

Здесь величина постоянного коэффициента сМ зависит от конструкции двигателя.

Читайте также:  Что залить чтобы двигатель работал тише

При этом также действует обратный магнитный поток Мобр, который вычисляется по выражению:

В итоге взаимодействия этих двух потоков появится результирующий:

Внимание! При вращении ротора в нем наводятся токи разной частоты, которые создают моменты сил с разными направлениями. Поэтому якорь двигателя будет совершать вращение под действием пульсирующего магнитного поля в ту сторону, с которой он начал вращение.

Во время преодоления однофазным двигателем номинальной нагрузки создается небольшое скольжение с основной долей прямого крутящего момента Мпр. Противодействие тормозного, обратного магнитного поля Мобр сказывается совсем незначительно из-за различия частот токов прямого и обратного направлений.

f2обр обратного тока значительно превышает f2пр, а создаваемое индуктивное сопротивление Х2обр сильно превышает активную составляющую и обеспечивает большое размагничивающее действие обратного магнитного потока Фобр, который в итоге этого уменьшается.

Поскольку коэффициент мощности у двигателя под нагрузкой небольшой, то обратный магнитный поток не может оказать сильное воздействие на вращающийся ротор.

Когда же одна фаза сети подана на двигатель с неподвижным ротором (n2=0), то скольжения, как прямое, так и обратное равны единице, а магнитные поля и силы прямого и обратного потоков уравновешены и вращения не возникает. Поэтому от подачи одной фазы невозможно раскрутить якорь электродвигателя.

Как быстро определить частоту вращения двигателя:

Как создается вращение ротора у однофазного асинхронного двигателя

За всю историю эксплуатации подобных устройств разработаны следующие конструкторские решения:

1. ручная раскрутка вала рукой или шнуром;

2. использование дополнительной обмотки, подключаемой на время запуска за счет омического, емкостного или индуктивного сопротивления;

3. расщепление короткозамкнутым магнитным витком магнитопровода статора.

Первый способ использовался в начальных разработках и не стал применяться в дальнейшем из-за возможных рисков получения травм при запуске, хотя он не требует подключения дополнительных цепочек.

Применение фазосдвигающей обмотки в статоре

Чтобы придать начальное вращение ротору к статорной обмотке дополнительно на момент запуска подключают еще одну вспомогательную, но только сдвинутую по углу на 90 градусов. Ее выполняют более толстым проводом для пропускания бо́льших токов, чем протекающие в рабочей.

Схема подключения такого двигателя показана на рисунке справа.

Здесь для включения применяется кнопка типа ПНВС, которая специально создана для таких двигателей и широко использовалась в работе стиральных машин, выпускаемых при СССР. У этой кнопки сразу включаются 3 контакта таким образом, что два крайних после нажатия и отпускания остаются зафиксированы во включенном состоянии, а средний — кратковременно замыкается, а потом под действием пружины возвращается в исходное положение.

Замкнутые же крайние контакты можно отключить нажатием на соседнюю кнопку «Стоп».

Кроме кнопочного выключателя для отключений дополнительной обмотки в автоматическом режиме используются:

1. центробежные переключатели;

2. дифференциальные или токовые реле;

Для улучшения запуска двигателя под нагрузкой применяются дополнительные элементы в фазосдвигающей обмотке.

Подключение однофазного двигателя с пусковым сопротивлением

В такой схеме к статорной дополнительной обмотке последовательно монтируется омическое сопротивление. При этом намотка витков выполняется биффилярным способом, обеспечивающим коэффициент самоиндукции катушки очень близким к нулю.

За счет выполнения этих двух приемов при прохождении токов по разным обмоткам между ними возникает сдвиг по фазе порядка 30 градусов, чего вполне достаточно. Разность углов создается за счет изменения комплексных сопротивлений в каждой цепи.

При этом методе еще может встречаться пусковая обмотка с заниженной индуктивностью и увеличенным сопротивлением. Для этого применяют намотку с маленьким числом витков провода заниженного поперечного сечения.

Подключение однофазного двигателя с конденсаторным запуском

Емкостной сдвиг токов по фазе позволяет создать кратковременное подключение обмотки с последовательно соединенным конденсатором. Эта цепочка работает только во время выхода двигателя на режим, а затем отключается.

У конденсаторного запуска создается наибольший крутящий момент и более высокий коэффициент мощности, чем при резистивном или индуктивном способе запуска. Он может достигать величины 45÷50% от номинального значения.

В отдельных схемах к цепочке рабочей обмотки, которая постоянно включена, тоже добавляют емкость. За счет этого добиваются отклонения токов в обмотках на угол порядка π/2. При этом в статоре сильно заметен сдвиг максимумов амплитуд, который обеспечивает хороший крутящий момент на валу.

За счет этого технического приема двигатель при пуске способен выработать больше мощности. Однако, такой метод используют только с приводами тяжелого запуска, например, для раскрутки барабана стиральной машины, заполненного бельем с водой.

Конденсаторный запуск позволяет изменять направление вращения якоря. Для этого достаточно сменить полярность подключения пусковой или рабочей обмотки.

Подключение однофазного двигателя с расщепленными полюсами

У асинхронных двигателей с небольшой мощностью порядка 100 Вт используют расщепление магнитного потока статора за счет включения в полюс магнитопровода короткозамкнутого медного витка.

Разрезанный на две части такой полюс создает дополнительное магнитное поле, которое сдвинуто от основного по углу и ослабляет его в месте охваченного витком. За счет этого создается эллиптическое вращающееся поле, образующее момент вращения постоянного направления.

В подобных конструкциях можно встретить магнитные шунты, выполненные стальными пластинками, которые замыкают края наконечников статорных полюсов.

Двигатели подобных конструкций можно встретить в вентиляторных устройствах обдува воздуха. Они не обладают возможностью реверса.

Источник

Асинхронный двигатель — что это такое, как устроен и где используется?

Сегодня есть множество типов электрических двигателей: коллекторные двигатели постоянного тока и универсальные, двигатели переменного тока синхронные и асинхронные, бесщеточные двигатели постоянного тока и синхронные двигатели с постоянными магнитами, шаговые двигатели и сервоприводы и т.д. Но самым распространенным на производстве был, есть и будет – асинхронный электродвигатель с короткозамкнутым ротором. В этой статье мы поговорим о том, что это такое и в чем заключаются его особенности.

Читайте также:  Какие бывают двигатели стирлинга

Определение и немного истории

Автором асинхронного двигателя считают Михаила Осиповича Доливо-Добровольского, который в 1889 году получил патент на двигатель с ротором типа «Беличья клетка», а в 1890 году на двигатель с фазным ротором, которые без особых изменений в конструкции используются и сегодня. А первые исследования и наработки в этом направлении были проведены в 1888 Галилео Феррарисом и Николой Тесла независимо друг от друга.

Главным отличием разработки Доливо-Добровольского от разработок Теслы было использование трёхфазной, а не двухфазной конструкции статора. Демонстрация первых двигателей состоялась на Международной электротехнической выставке во Франкфурте на Майне в сентябре 1891 года. Там представили три трёхфазных асинхронных электродвигателя, самый мощный из которых был на 1.5 кВт. Конструкция этих машин оказалась настолько удачно, что не пережила весомых изменений до наших дней.

Определение асинхронной машины звучит следующим образом:

Асинхронной называется электрическая машина переменного тока, в которой частота вращения ротора не равна частоте вращения магнитного поля, создаваемого обмотками статора.

Принцип работы

В любом электродвигателе ротор приводится во вращение в результате взаимодействия магнитных полей ротора и статора и работы силы Ампера. Для создания магнитного поля используются либо постоянные магниты, либо электромагниты — обмотки статора и ротора. Одну из обмоток (ротора или статора) называют обмоткой возбуждения, вторую обмотку называют обмоткой якоря. Асинхронный двигатель отличается от других типов электромашин тем, что у него нет выраженной обмотки возбуждения, отсюда возникает вопрос «если нет обмотки возбуждения, то как создаётся магнитное поле?», если опустить некоторые особенности, то ответ на этот вопрос достаточно простой — асинхронный двигатель почти как трансформатор.

Напряжение от сети подключают к обмоткам статора. В них протекает электрический ток, в результате чего возникает магнитное поле статора. Так как сеть трёхфазная, фазы токов и напряжений каждой из фаз сдвинуты друг относительно друга на 120˚. Сила тока изменяется по синусоидальному закону и ток протекает то в одной, то в другой обмотке. Из-за этого магнитное поле получается вращающимся, что наглядно иллюстрирует ЭТО ВИДЕО

Магнитное поле статора индуцирует ЭДС в обмотках ротора (хоть короткозамкнутого, хоть фазного, о конструкции и видах мы поговорим дальше). Так как обмотки ротора закорочены или подключены к сопротивлениям — в них начинает протекать электрический ток, из-за которого возникает еще одно магнитное поле, которое, взаимодействуя с полем статора, приводит во вращение ротор.

Скорость вращения поля статора называют «синхронной», а скорость вращения ротора «асинхронной», из-за такой особенности этот тип электромашин и получил своё название. Ротор всегда немного отстает от поля статора, разность этих скоростей называют «скольжением». Скорость вращения (оборотов в минуту) поля статора зависит от частоты тока в питающей сети и числа его полюсов, если проще — от количества катушек в обмотке, и вычисляется по формуле:

где f – частота напряжения питающей сети, р – число пар полюсов, 60 – секунд в минуте

Синхронная скорость двигателя с одной парой полюсов равна: 60*50/1=3000 оборотов в минуту. Но асинхронная скорость или скорость вращения ротора будет несколько ниже, как отмечалось ранее. Обычно она находится в районе 2700-2950 об/мин, а скольжение лежит в пределах 2-8% (зависит от типа электродвигателя, его мощности и нагрузки на валу). Скольжение измеряется в относительных величинах или в процентах, и рассчитывается по формуле:

где n1 — синхронная скорость вращения, n2 — скорость вращения ротора.

Конструкция

Конструкция асинхронного двигателя, пожалуй, самая простая среди его аналогов. Он состоит из ротора и статора. Зачастую на статоре расположена трёхфазная обмотка, исключение составляют двигатели, предназначенные для работы в однофазной сети с двухфазной обмоткой или с рабочей и пусковой обмоткой. Статор состоит из металлического корпуса и сердечника с обмотками (собственно их называют обмоткой статора).

Так как двигатель питается переменным током, возникает проблема, связанная с потерями на блуждающие токи (т.н. токи Фуко), для этого сердечник статора набирают из тонких пластин. Стальные пластины для предотвращения контакта друг с другом изолируются окалиной, скрепляются лаком. Ток, протекающий в обмотках статора, называют током статора.

Корпус статора закрывается с двух сторон подшипниковыми щитами, в них, соответственно, устанавливаются подшипники скольжения или качения, в зависимости от мощности и размеров машины. Подшипники закрываются крышками, это нужно для их смазки, обычно используют пластичную смазку, как литол, солидол и подобные.

Реже, в больших и мощных электрических машинах могут использоваться опорные подшипники скольжения с циркуляционной системой смазки (жидкостная смазка). В них маслонасос закачивает масло, в рабочем режиме ротор таких машин скользит по тонкой масляной плёнке, подобно тому, как это происходит во вкладышах на ДВС.

По конструкции корпуса и типу крепления различают двигатели на лампах или с фланцевым креплением, также бывают с комбинированным типом крепления — с лапами и фланцем.

В зависимости от типа двигателя вал из него может выходить как с одной, так и с обеих сторон. К нему присоединяется исполнительный механизм, для этого конец выполняется конической или цилиндрической формы или с проточкой для установки шпонки и соединения с исполнительным механизмом.

Читайте также:  Причины падения давления масла в двигателе д245

В большинстве электродвигателей используется принудительное воздушное охлаждения. Для этого на корпусе продольно располагаются рёбра, а на другом конце вала устанавливается крыльчатка вентилятора охлаждения. Во время работы двигателя она вращается и прогоняет воздух вдоль рёбер, забирая тепло от статора.

Короткозамкнутый и фазный ротор

Различают два типа асинхронных двигателей — с короткозамкнутым и с фазным ротором.

Короткозамкнутый ротор или ротор типа «Беличья клетка» представляет собой набор медных или алюминиевых стержней (2) соединенных (замкнутых) между собой кольцом (3). Стержни впаиваются или заливаются в сердечник (1). Беличьей клеткой его называют из-за внешней схожести, что вы и можете наблюдать в левой части следующей иллюстрации.

Фазный ротор отличается конструкцией, на нём расположена полноценная трёхфазная обмотка, зачастую её катушки соединены по схеме «звезды», то есть их концы соединяются в одной точке, а начала катушек соединяются с токопроводящими кольцами. С помощью щеточного узла образуется скользящий контакт с кольцами. Он, в свою очередь, состоит из щёток и щеткодержателей.

Фазный ротор используют для плавного пуска или регулировки момента на валу посредством изменения величины скольжения двигателя за счет изменения активного сопротивления обмотки ротора. Для этого к выводам щеток подсоединяется регулировочный реостат или набор мощных резисторов (для ступенчатой регулировки). Если сказать кратко, то в двигателе с фазным ротором на обмотку ротора не подают ток, как в синхронном двигателе, например, а, наоборот, к ним подключают сопротивления в качестве нагрузки.

Такие двигатели зачастую используются в грузоподъемных механизмах — кранах или лифтах. Двигатели с короткозамкнутым ротором используются везде: в вентиляции, в станках, и в грузоподъёмных механизмах, для привода насосов и задвижек и т.д.

Схема соединения обмоток статора

Так как в статоре односкоростного асинхронного двигателя расположено три обмотки, то для подключения к трёхфазной сети их необходимо как-то соединить. Как и в любой трёхфазной цепи различают две схемы соединения:

1. «Звезда». Концы обмоток соединяются вместе, напряжение подводится к их началам.

2. «Треугольник». Начало следующей обмотки соединяется с концом предыдущей.

Концы обмоток выводятся в клеммную коробку, которую еще называют «брно» или «борно» (мне не удалось найти правильного названия, а в словаре указаны оба варианта). В зависимости от типа и конструкции двигателя в «борно» может быть выведено 3 или 6 проводов. Если выведено 3 провода – то обмотки соединены «с завода» по определенной схеме, а если 6, то вы можете выбрать схему подключения исходя из напряжения питающей сети.

В зависимости от года производства и производителя электродвигателя могут применяться такие обозначения выводов обмоток, как приведены в таблице ниже.

Концы обмоток на клеммнике расположены таким образом, чтобы с помощью одного комплекта из трёх перемычек можно было соединить обмотки по нужной схеме. Для соединения по схеме звезды перемычки устанавливают в ряд на концы обмоток, а для треугольника – параллельно друг другу соединяя «верхние» и «нижние» клеммы. Для этого начала и концы обмоток смещены друг относительно друга, что вы увидите на следующей иллюстрации.

Напряжение и схема подключения

Как отмечалось выше, схему соединения обмоток выбирают исходя из доступного линейного напряжения в трёхфазной сети. Наиболее распространенное напряжение в РФ это 380/220. Допустим, что у нас есть двигатель, шильдик которого выглядит, как показано на фотографии:

Здесь мы видим обозначение «треугольник/звезда» и напряжения «220/380В» — это значит, что если линейное напряжение в сети 380 – использовать «звезду», как зачастую и делают. Но если линейное напряжение в трёхфазной сети равно 220В, то нужно подключать этот двигатель по схеме «треугольник» (такое встречается и сегодня на старых предприятиях или отдельных участках электросети с напряжениями 220/127 вольт).

Также на эти цифры обращают внимание, когда двигатель подключают к однофазной сети, хоть через фазосдвигающий конденсатор, хоть через частотный преобразователь с однофазным входом и трёхфазным выходом, всегда выбирают ту схему обмоток, которая рассчитана на подключение к сети 220В.

Порой попадаются и старые электродвигатели, в которых обмотки рассчитаны на номинальные напряжения 127/220 и они не предназначены для прямого включения в трёхфазную электросеть с линейным напряжением 380В. Их можно подключать только к однофазной сети через конденсатор или частотник, как было отмечено выше, но в этом случае обмотки уже нужно соединять «звездой».

На предприятиях часто используются мощные электродвигатели, в которых наоборот, схема «треугольник» рассчитана на питание напряжением 380В, а звезда 660В (тогда на шильдике указывается 380/660). Такие двигатели, зачастую, используются, чтобы снизить пусковые токи при пуске, посредством переключения обмоток со схемы «звезда» на схему «треугольник», так как это дешевле, чем использовать частотник или устройства плавного пуска в этих же целях.

Обращайте внимание на то, что написано на шильдике. Неправильное подключение двигателя опасно его преждевременной смертью.

Заключение

Асинхронные двигатели нашли широчайшее применение практически во всех сферах жизнедеятельности человека. Такая популярность обусловлена простотой конструкции и, как следствие, долгим сроком службы. В асинхронном двигателе с короткозамкнутым ротором обслуживания требуют только подшипники. При надлежащей эксплуатации в номинальных для конкретной серии режимах работы, а также соблюдении требований по климатическим условиям и условиям окружающей среды — эти двигатели служат десятилетиями.

Источник

Adblock
detector