Двигатель ванкеля своими руками

Двигатель Ванкеля: что это такое и как работает

На большинстве современных автомобилей сейчас используются ДВС, устроенные по поршневой схеме. Но, существуют двигатели внутреннего сгорания, которые имеют совершенно другую конструкцию. Об одном из таких двигателей мы и расскажем в данной статье.

Что такое двигатель Ванкеля?

Как выглядит двигатель Ванкеля в разрезе.

Из курса физики средней школы все прекрасно помнят, что работа четырёхтактного двигателя внутреннего сгорания состоит из:

  • впуска топлива/воздуха;
  • сжатия, где их смесь становится единым целым, а затем воспламенения искрой свечи зажигания;
  • рабочего хода: поршень движется в обратном направлении, совершая полезную работу;
  • выпуска: остатки отработанной смеси выбрасываются из мотора.

И всё помнят наглядное учебное пособие: цилиндр бензинового мотора в разрезе, на котором отлично видно все стадии при вращении ручки. Но, не все существующие/используемые в настоящее время двигатели имеют одинаковое устройство. Кроме всем известного классического ДВС есть и другие варианты конструкции.

Яркий пример — роторно-поршневой двигатель Ванкеля. Данная конструкция ДВС была разработана в 1957 году сотрудником компании NSU Вальтером Фройде в соавторстве с Феликсом Ванкелем.

Отличительная черта этого двигателя — использование трёхгранного ротора, имеющего форму треугольника Рёло, вращающегося внутри цилиндра особого профиля, поверхность которого выполнена по эпитрохоиде.

Принцип работы двигателя Ванкеля

В двигателе Ванкеля цикл работы точно такой же, как в классическом четырёхтактном агрегате внутреннего сгорания: впуск, сжатие, рабочий ход и выпуск. Вот только за него не поршень совершает два хода вверх-вниз (вперёд-назад), а вал делает всего один оборот трёхгранного ротора внутри эпитрохоидальной камеры цилиндра, являющейся сердцем двигателя.

Принцип работы двигателя Ванкеля: 1 — впуск топливо-воздушной смеси; 2 — сжатие смеси; 3 — зажигание и рабочий ход; 4 — выпуск отработанных газов;

Несмотря на кажущуюся сложность, принцип работы двигателя Ванкеля достаточно прост.

  • На первом этапе цикла смесь из бензина и воздуха поступает в камеру мотора.
  • Затем ротор проворачивается на 45 градусов, сжимая её: таком виде происходит поджиг смеси искрой от свечи зажигания.
  • После чего следует рабочая фаза: сгоревшая топливно-воздушная смесь давит на ротор, обеспечивая тем самым его вращение.
  • Наконец, на заключительном этапе ротор проворачивается и отработанные газы через выпускную систему попадают в выхлопную систему.

И так раз за разом. Но в отличие от классического ДВС, где 2-3 тысячи оборотов в минуту – рабочий режим, для двигателя Ванкеля даже 10 тысяч оборотов – не предел.

Эксцентриковое вращение вала обеспечивает его форма – с внутренним отверстием и зубцами, ротор вращается вокруг неподвижного вала с ответными зубьями. Именно они не дают ему проскользнуть и заклинить даже при особенно интенсивном вращении.

Читайте также: Что такое оппозитный двигатель и как он работает.

Преимущества и недостатки двигателя Ванкеля

У вас может возникнуть простой и предсказуемый вопрос, а почему под капотом большинства автомобилей находится не двигатель Ванкеля, а классический четырехтактный ДВС. Чтобы ответить на данный вопрос рассмотрим преимущества и недостатки двигателя Ванкеля. Так, двигатель Ванкеля:

  • меньше весит и занимает меньше места в сравнении с аналогичными по характеристикам агрегатами;
  • работает заметно тише, на холостых оборотах двигатель вообще почти не слышно;
  • лучше сбалансирован, конструкция с одним вращающимся валом, лишённая шатунов с их возвратно-поступательными движениями, даёт отличные результаты;
  • обеспечивает лучшую динамику и высокую максимальную скорость;
  • может длительное время работать на высоких оборотах;
  • может работать на низкооктановом топливе;

Но, недостатков у двигателя Ванкеля также немало, например:

  • высокий, часто даже чрезмерный (до 20 литров на 100 км), аппетит;
  • повышенный, в сравнении с обычными четырёхтактными моторами, расход масла;
  • эксплуатация на низких оборотах: расход топлива возрастает, а ресурс мотора, напротив, падает;
  • невозможно движение в натяг, низкий уровень инерции, тормозить мотором не получается;
  • низкий ресурс агрегата;
  • сложности в ремонте;

Как видно недостатки очень серьезные и их немало. Как результат, сейчас в производственной гамме легковых серийных машин нет моделей, оснащённых двигателем Ванкеля. Последнее серийное авто, под капотом которой устанавливался этот агрегат, Mazda RX-8, перестала сходить с конвейера ещё в 2012 году.

В то же время на уже выпущенные автомобили с двигателем Ванкеля все чаще устанавливают обычные ДВС. Агрегат считается неремонтопригодным, мотористов, которые в состоянии произвести его качественное восстановление, можно пересчитать по пальцам, большинство считают их попросту «одноразовыми». Поэтому под капотами RX-8, а также не менее популярной предшественницы, RX-7, появляются турбированные или атмосферные рядные четвёрки.

Читайте также: Что такое CRDI двигатель и как он устроен.

Источник

Вдохновили ролики о самодельных моторах. Решился и сделал такой с нуля

Приветствую тебя, уважаемый читатель.

В этой статье я расскажу, как сделал самодельный бесщеточный мотор полностью с нуля в домашних условиях. Кому интересно, усаживайтесь поудобнее и начинаем.

На сборку двигателя своими руками меня подтолкнул не один десяток роликов с зарубежных каналов, там люди собирали электромоторы из того, что было и они хорошо работали и запускались с первого раза.

Читайте также:  Как подобрать помпу для двигателя

Вот и мне после просмотра данных роликов захотелось собрать что-то свое, что заработает и это можно будет применить в своих самоделках.

Нашел я у себя трансформатор от микшера, также заказал 50 штук неодимовых магнитов из Китая и контроллер для управления двигателем.

Диаметр тора от моего трансформатора равен 62 мм, по ним я сделал чертеж в компасе для ротора.

Из металлического листа вырезал круг диаметром 62 мм, таких же размеров сделал круг из фанеры, толщиной 3 мм.

На металлическом диске сделал разметку для центров магнитов, все работы проводил при помощи циркуля и транспортира.

Из фанеры я вырезал диск диаметром 37,65 мм, он будет держать магниты на одинаковом расстоянии от вала.

Далее я из фанеры выпилил кольцо с внутренним диаметром 62 мм, который затем приклеил на ротор с помощью эпоксидной смолы. (Магниты устанавливал чередуя полюса, для этого взял один из магнитов и проверял, притягивается ли магнит или отталкивается и так расставил все 12 штук поочередно — притягивается, отталкивается).

После высыхания эпоксидки я слегка отшлифовал поверхность, убрав наплывы.

Затем я принялся за изготовление статора из тора трансформатора. Сделал на скорую руку станок из точила и проделал пропилы в торе, постепенно измеряя зазор штангенциркулем, в идеале он должен быть одинаковым.

В итоге получился такой тор, процесс пропиливания пазов занял много времени, около 6 часов за станком.

После того, как пропилы готовы, я взял лак для ногтей у своей сестры ( с ее разрешения) и покрасил зазоры, чтобы защитить обмотку от случайного КЗ.

Одного лака для защиты недостаточно, я взял обычный лист А4 и нарезал из него полосок, ими обклеил каждый зуб статора.

Для того, чтобы ротор вращался, необходимо сделать крепление для подшипника. Я взял алюминиевый диск, сделал в нем отверстия и проточил их напильником, затем примотал его к статору на капроновую нитку и промазал лаком. (Листайте галерею 🢠 🢡 ).

Теперь статор готов для того, чтобы сделать на нем обмотку. В своих закромах нашел проволоку диаметром 0,5 мм, ее и использовал для намотки. Количество витков на каждом зубе вмещал максимально возможно, получилось ровно 50, обмотку мотать нужно в одном направлении и с одинаковым количеством витков.

Обмотки подключил звездой, то есть соединил концы каждой фазы друг с другом, а оставшиеся три вывода подключаются к контроллеру.

Когда я полностью сделал обмотку, я приступил к изготовлению ручки из пластиковой трубы, в которой будет находится еще один подшипник, он уменьшит перекосы и придаст жесткость конструкции.

Для выставления расстояния между ротором и статором я использовал обычную металлическую трубку, которую стачивал до тех пор, пока не получится минимально возможного зазора. (Чем меньше зазор, тем выше крутящий момент, но ниже обороты).

В ходе испытаний были небольшие доработки и я заменил пластиковую ручку на металлическую с алюминиевым переходником. Также установил трехкулачковый патрон на вал.

В итоге создания самодельного двигателя по ходу процесса у меня получилась практически готовая бормашинка, осталось только отцентровать трехкулачковый патрон и сделать защитный кохуж на ротор двигателя.

Также прикладываю видео работы данного мотора.

Кому понравилась статья про сборку мотора, пишите в комментариях свои доработки, пожелания, а также ставьте лайк и подписывайтесь на канал.

Благодарю за дочитывание и всем добра.

Источник

Устройство автомобилей

Двигатель Ванкеля

Общие сведения

Поршневой двигатель внутреннего сгорания занял прочные позиции под капотом подавляющего большинства автомобилей и другой самоходной техники. Этому способствовала простота преобразования теплоты в механическую работу, а также достаточно высокий КПД по сравнению с другими тепловыми двигателями.

Тем не менее, конструкция с классическим кривошипно-шатунным механизмом и поршнем, совершающим во время работы возвратно-поступательные движения, не лишена серьезных недостатков.
Одним таких недостатков является высокая инерционная нагрузка на детали, обусловленная именно характером движения поршня (или поршней), имеющих знакопеременные скорости и ускорения, что при даже небольшой массе поршня приводит к появлению значительных сил инерции, и, как следствие, к повышенной вибрации двигателя во время работы и необходимости его уравновешивания.
Кроме этого, поршневой ДВС нуждается в сложной системе газообмена, которая решается применением газораспределительного механизма (ГРМ), существенно усложняющего конструкцию двигателя.

Поэтому конструкторы во всем мире продолжают поиск оригинальных решений для конструкций ДВС, пытаясь избавиться от недостатков поршневого двигателя.
В середине прошлого века инженеры немецкой компании NSU Motorenwerke AG (NSU) Вальтер Фройде и Феликс Ванкель вплотную занялись разработкой уникальной конструкции теплового двигателя, в котором поршень во время работы совершал бы не возвратно-поступательное, а вращательное движение. Если верить историкам, автором идеи являлся Феликс Ванкель, который в еще в далекой молодости задумался о замене поршня на ротор, но приступить к реализации своих замыслов из-за финансовых трудностей он смог лишь в зрелые годы.

Биография Феликса Ванкеля

Феликс Ванкель (нем. Felix Heinrich Wankel) родился в 1902 году в германском городке Лар. Детство и молодость Ванкеля были нелегкими – его отец погиб в Первую Мировую войну, и у Феликса не было средств не только на учебу в ВУЗе, но даже на обучение какой-либо рабочей специальности. Но любовь к технике и природный ум позволили юному изобретателю самостоятельно освоить грамотность и даже углубленно изучить многие технические дисциплины.

Читайте также:  Какие двигатели относятся к двигателям с внутренним смесеобразованием относятся

Идея конструкции роторно-поршневого двигателя (РПД) пришла к Ванкелю еще в 22 года (а по одной из легенд 17-летний Ванкель увидел РПД во сне), но для ее реализации нужны были исследования, опытные разработки и, конечно же, финансы.
Свой двигатель Ванкель назвал «машиной с вращающимися поршнями» и 1936 году получил на нее патент, а также приглашение от компании BMW перебраться в Баварию, в город Линдау, чтобы заняться разработкой авиационных моторов в условиях хорошо оснащенной лаборатории.
Мечты начинали сбываться, однако через несколько лет работа над двигателем была прервана войной.

Тем не менее, еще до начала войны Ванкель построил несколько рабочих прототипов роторно-поршневого двигателя, однако изобретатель никак не мог определиться с оптимальной формой ротора и внутренней поверхности статора. Экспериментируя с эллипсовидными и овальными формами, он не мог добиться нужной степени уплотнения между ротором и камерой сгорания. По-видимому, сказывались недостатки образования, полученного в молодые годы, особенно скупость познаний в математике и геометрии.

В 1942 году лаборатория Ванкеля в Линдау была распущена, а сам изобретатель был переведен на работу в конструкторское бюро DVL, занимавшееся разработкой моторов для военной авиации и быстроходных катеров.
В последние годы войны Ванкель тесно сотрудничал со специалистами японской компании Hitachi, благодаря чему в Японии было выпущено несколько моделей скоростных истребителей. Судьба довоенных и военных разработок Ванкеля неизвестна. По одной из версий все документы, касающиеся разработок и исследований лаборатории Ванкеля, были вывезены во Францию в качестве репарационного трофея после победы над фашистской Германией.

После войны в 1951 году роторно-поршневым двигателем заинтересовалась компания «Гётце» (Goetze), которая выделила средства на восстановление частной лаборатории Ванкеля в Линдау. В том же году Феликс Ванкель возобновил разработку РПД.
Главным заказчиком Ванкеля стала немецкая компания NSU, производившая мотоциклы и автомобили.

Безуспешные поиски оптимальной формы ротора и статора продолжались бы долго, если бы не помощь вдохновленного идеями РПД инженера компании NSU Вальтера Фройде. Именно он в 1957 году нашел оптимальное сочетание формы ротора и камеры сгорания.
Тем не менее, изобретателем роторно-поршневого двигателя справедливо считается Феликс Ванкель – ведь именно ему принадлежит сама идея РПД, над которой он упорно работал долгие годы. И двигатель, конструкции которого Ванкель посвятил практически всю свою сознательную жизнь, по праву носит его имя.
В 1958 году компания NSU выпустила первый в мире автомобиль с РПД, но конструкция была «сырой» и нуждалась в дальнейшей доработке.

После того, как в 1969 году компания NSU перешла под контроль концерна Volkswagen, Феликс Ванкель продолжил работу в своем центре в Линдау над совершенствованием РПД по заказам японской компании Toyo Kogyo, позднее сменившей имя на Mazda, и советской компании «ВАЗ».
Феликс Ванкель работал над конструкцией роторно-поршневого двигателя до самой смерти. Он умер 9 октября 1988 года в Хайдельберге в возрасте 86 лет.

Любопытно, но Феликс Ванкель никогда в жизни не садился за руль автомобиля. С раннего детства него было очень слабое зрение.
Известно также, что он старался избегать математических расчетов, полагаясь на интуицию. Здесь, очевидно, сказывается и недостаток образования, полученного в юности. Тем не менее, этот факт лишь подчеркивает уникальный природный талант изобретателя.

Конструкция двигателя Ванкеля

Конструкция роторно-поршневого двигателя не отличается высокой сложностью. На эксцентриковом валу установлен ротор треугольной формы (треугольник Рёло), каждая из граней которого имеет форму выпуклой дуги.

Треугольник Рёло ограничивает площадь, образуемую при пересечении трёх кругов одинакового диаметра с центрами в вершинах правильного треугольника и радиусами, равными стороне этого треугольника (см. рисунок).
Стороны такого треугольника, по сути, являются дугами окружностей одинакового диаметра.
Как геометрическая фигура, треугольник Рёло обладает рядом уникальных свойств, которые и используются в технике — на его основе были созданы кулачковые и грейферные механизмы, роторно-поршневой двигатель Ванкеля, и даже станки, позволяющие сверлить (фрезеровать) квадратные отверстия.
Название фигуры происходит от фамилии немецкого механика Франца Рёло, исследовавшего ее свойства и использовавшего этот криволинейный треугольник в своих механизмах.

Ротор вращается по принципу планетарного механизма вокруг центральной оси внутри неподвижного статора. Вершины треугольника при этом описывают сложную кривую, именуемую эпитрохоидой.
Каждая из трех вершин ротора скользит по внутренней поверхности статора, имеющей форму эпитрохоиды, при этом серповидные полости (камеры) между ротором и статором постоянно изменяются, последовательно увеличиваясь и уменьшаясь в объеме.

Эпитрохоидой называют плоскую кривую, образуемую точкой окружности, которая без скольжения перекатывается по наружной стороне другой окружности.

Для изоляции камер друг от друга используются специальные уплотнители — радиальные и торцевые подпружиненные пластины, называемые «апексами».

Газораспределение в двигателе Ванкеля осуществляется через специальные окна – впускное и выпускное, т. е. конструкция не нуждается в сложном клапанном механизме ГРМ, как у четырехтактного поршневого двигателя.

Рабочий цикл двигателя Ванкеля можно разложить на следующие такты:

Читайте также:  Шумно работает двигатель чери амулет

  • всасывание топливовоздушной смеси через впускное окно благодаря образованию разрежения в пространстве между ротором и статором. Может применяться впуск чистого воздуха с последующим впрыском топлива форсункой;
  • сжатие смеси благодаря уменьшению объема между вращающимся ротором и статором, после чего смесь воспламеняется электрической искрой свечи зажигания;
  • рабочий ход совершается благодаря высокому давлению продуктов горения на одну из криволинейных стенок ротора в камере сгорания, при этом ротор вращается и передает усилие на цилиндрический эксцентрик выходного вала;
  • выпуск — пространство между статором и вращающимся ротором уменьшается в объеме, и отработанные газы вытесняются через выпускное окно.

Преимущества и недостатки двигателя Ванкеля

Перед поршневыми двигателями роторно-поршневой двигатель Ванкеля имеет ряд существенных преимуществ:

  • хорошая механическая уравновешенность, низкий уровень вибрации;
  • относительно нешумная работа;
  • высокие динамические характеристики и уравновешенность позволяют очень быстро раскрутить вал двигателя до высоких оборотов;
  • высокая удельная мощность благодаря малой массе, поскольку конструкция не содержит промежуточных паразитических элементов, в т. ч. для уравновешивания (шатуны, коленчатый вал, массивный маховик);
  • меньшие габаритные размеры;
  • меньшее число деталей и относительно простая конструкция.

К основным недостаткам двигателя Ванкеля можно отнести следующее:

  • высокое давление между трущимися поверхностями приводит к интенсивному износу и нагреву двигателя, поэтому возникает потребность в частой замене уплотнителей и контроле над качеством и количеством моторного масла;
  • относительно небольшой ресурс из-за интенсивного износа основных деталей;
  • следствием износа уплотнителей являются высокие утечки между камерами и, как следствие, снижение динамики, падение КПД и увеличение токсичности выхлопа;
  • меньшая экономичность по сравнению с поршневыми двигателями классической конструкции. Автомобили с РПД потребляют от 7 до 20 литров топлива на 100 км, в зависимости от режима движения, моторного масла — от 0,4 л до 1 л на 1000 км.
  • высокие требования к геометрической точности изготовления деталей двигателя делают его сложным в производстве.

Первые роторные двигатели, устанавливавшиеся на автомобили, не произвели фурора среди потребителей. Особенно сильно по «репутации» РПД ударил топливный кризис 1973-74 года, когда цены на бензин резко взлетели, и покупатели машин стали прицениваться к моделям с экономным расходованием топлива. Роторно-поршневой двигатель расходовал до 20 литров бензина на сотню километров пробега, поэтому неудивительно, что продажи автомобилей с РПД во время кризиса упали до предела.
Единственной автомобильной компанией, не отказавшейся от «затеи» с роторно-поршневым двигателем, оказалась японская Mazda, где РПД использовался в различных моделях вплоть до 2012 года.
Достаточно долгое время автомобили с роторно-поршневыми двигателями выпускались и на советском ВАЗе (в СССР понятия «топливный кризис» не существовало).

Особенности эксплуатации роторно-поршневого двигателя

Роторно-поршневой двигатель требует особого ухода по сравнению с классическим поршневым ДВС.
РПД боится перегревов, боится масляного «голодания», и чувствителен к качеству топлива.

Расход масла РПД существенно выше, чем у исправного поршневого ДВС, поэтому необходимо внимательно следить за его уровнем в смазочной системе. Даже небольшой масляный «голод», способен вывести двигатель в капитальный ремонт или даже в утиль.
Для удаления нагара, образуемого на стенках статора, следует регулярно (но непродолжительно) форсировать двигатель (давать высокие обороты). Так же, нужно контролировать состояние масляных форсунок.

Признаки скорого отказа двигателя Ванкеля связаны чаще всего с износом рабочих поверхностей и уплотнителей, что обычно диагностируется заметным снижением компрессии. К таким признакам можно отнести неустойчивую работу на холостом ходу, и затрудненный пуск горячего двигателя.

Применение РПД в технике

Двигатель разрабатывался изначально именно для применения на автотранспорте. Первый серийный автомобиль с роторным двигателем — немецкий спорткар NSU Spider, первый автомобиль серийного производства — немецкий седан бизнес-класса NSU Ro 80.

К сожалению, ресурс двигателя Ванкеля на этих автомобилях оказался крайне малым (ремонт требовался уже после пробега порядка 50 тыс. км), поэтому первые автомобили, оснащенные РПД, заслужили плохую репутацию и даже скандальную известность.

Тем не менее, определенные и явные достоинства двигателей Ванкеля привлекали внимание конструкторов и инженеров, пытавшихся усовершенствовать конструкцию технически и технологически.

Наиболее настойчивыми и удачливыми оказались инженеры компании Mazda, создавшие роторно-поршневые двигатели серии «Renesis», которые оказались достаточно экономичными и экологичными по сравнению с немецкими предшественниками. Японским конструкторам удалось значительно сократить потребление масла и бензина, а также довести выброс вредных веществ до норм, соответствующих Euro IV.

Автомобили марки Mazda с индексом «RE» в наименовании (первые буквы от названия «Renesis») могут использовать в качестве топлива как бензин, так и водород (РПД менее чувствителен к детонации, чем поршневой двигатель). Это явилось очередным витком роста внимания к РПД со стороны разработчиков.

В 2019 году российские учёные из Центрального института авиационного моторостроения им. П. И. Баранова и Фонда перспективных исследований решили эту проблему, создав РПД на основе материалов нового поколения с использованием металло-керамических композитов.
Согласно результатам испытаний, износ этих элементов значительно ниже, чем у аналогичных металлических. Это подтвердило возможность и перспективность применения композиционных материалов для изготовления наиболее нагруженных и проблемных элементов конструкции РПД. В новом отечественном двигателе применена также специально разработанная для РПД система турбонаддува с охлаждением воздуха и новая система управления.
Каковы дальнейшие перспективы использования двигателя Ванкеля в автомобилестроении – покажет время.

Источник

Adblock
detector