Двигатель постоянного тока с низкими оборотами

Как регулировать обороты двигателя постоянного тока через Arduino

Наверное, каждый пацан в своём детстве разбирал игрушки и нередко находил в них небольшие моторчики. Кто их подключал напрямую к батарейке помнит, что они начинали вращаться, а направление вращения зависело от того какую подать полярность на его клеммы. В простоте регулировки и реверсирования и состоит прелесть электродвигателей постоянного тока (ДПТ).

Вообще, правильное название миниатюрных двигателей — это коллекторный двигатель постоянного тока с постоянными магнитами или модельный электродвигатель. Магниты в них располагаются на статоре и играют роль обмотки возбуждения. Модельными они называются из-за того, что их часто используют в радиоуправляемых моделях.

Регулировка оборотов

Известно, что при подключении такого двигателя к источнику питания он сразу начинает вращаться, а направление его вращения зависит от полярности подключенного напряжения.

При изменении питающего напряжения изменяется ток в обмотках, следовательно изменяется и подводимая мощность и его обороты. Есть два основных способа изменения напряжения на клеммах таких электродвигателей — использовать балластные резисторы для ограничения тока или использовать ШИМ-регулирование.

Балластные резисторы греются, выделяют энергию в виде тепла в воздух – это не эффективно и бесполезно.

Смысл ШИМ-регулирования состоит в подаче импульсов с фиксированной частотой, но изменяющейся шириной. От ширины импульса зависит действующее напряжение на подключенной нагрузке и вычисляется по формуле:

где Uнагр – напряжение на нагрузке, Uпит – напряжение источника питания, k – коэффициент заполнения.

Коэффицент заполнения – то отношение ширины импульса (tимп) к периоду (T), то есть:

На рисунке ниже вы видите, как выглядит питание нагрузки через ШИМ-регулятор при разных коэффициентах заполнения.

Короче говоря,при ШИМ-регулировании питание очень быстро включается и отключается, то есть подаётся импульсами. И чем уже эти импульсы – тем меньшее напряжение доходит до нагрузки.

Для ШИМ-регулирования можно собрать схему на таймере NE555 и других микросхемах либо использовать микроконтроллер.

Семейство плат с микроконтроллером ардуино также способно выдавать ШИМ сигнал, стандартная частота ШИМ у них 500Гц, а если быть точным, то 488,28 Гц. Если вам не принципиальная частота – то можно использовать как есть без сторонних библиотек. Отмечу, что для большинства применений этого достаточно. Не очень хорошо это подходит для регулирования яркости осветительных приборов из-за повышения коэффициента пульсаций светильника и вреда для зрения в итоге.

Обратите внимание на иллюстрацию, приведенную выше. Из неё мы видим микроконтроллер Atmega328, который лежит в основе этих плат выдаёт ШИМ-сигнал только на выходах 3, 5, 6, 9, 10, 11, которые обычно помечены знаком «

» плате, а на картинках с распиновками сокращением «PWM».

Подключение к Arduino

Напрямую к порту ардуино подключать нагрузку для диммирования нельзя, так как он может выдать всего 20 мА. То есть напрямую к порту можно подключать отдельные маломощные 5-мм светодиоды, во всех остальных случаях – используйте транзистор. В последнем случае максимальная нагрузка зависит от типа транзистора.

Как мы уже определились ШИМ у нас выдают только пины с номерами 3, 5, 6, 9, 10, 11. Значит, к ним и будем подключать нагрузку. В качестве транзистора предлагаю использовать полевой транзистор (MOSFET) IRF840 – он N-канальный со встроенным обратным диодом для защиты от всплесков противо-ЭДС, его характеристики:

  • Предельно допустимое напряжение сток-исток (Uds): 500 V
  • Предельно допустимое напряжение затвор-исток (Ugs): 20 V
  • Пороговое напряжение включения Ugs(th): 4 V
  • Максимально допустимый постоянный ток стока (Id): 8 A

Можно использовать и другие транзисторы с логическим уровнем включения затвора ( Ugs(th) до 5В), в противном случае придется использовать драйвер или промежуточный транзистор для его открытия.

Кроме транзистора нам нужно 2 резистора — первый между выходом платы и затвором на 240 Ом (если его у вас нет – возьмите соседние номиналы) для ограничения тока заряда затворной ёмкости, так мы снизим вероятность выхода из строя порта и просадок по питанию. Второй резистор на 10-12 кОм подключим между затвором и землёй. Он нужен для того, чтобы затвор не висел в воздухе, а также разряда затворной ёмкости и ускорения закрытия полевика. Схему подключения вы видите ниже.

Читайте также:  Как увеличить давление масла в двигателе уаз буханка

Чтобы задавать обороты, добавим в схему потенциометр, его подключим к аналоговому входу так, как мы делали это в прошлых статьях о сервоприводах и шаговых двигателях .одключение по

Соберем эту схему.

Для ШИМ в родной библиотеке Arduino IDE есть специальная функция — analogWrite (pin, value), в ней pin – номер порта, на который нужно выдавать сигнал, а value – его величина от 0 до 255. То есть при значении value равном 255 коэффициент заполнения на выходе будет равен 1, т.е. будет непрерывный сигнал на входе, а при 127 — почти 50%.

Для нашего эксперимента достаточно простенького кода, который вы видите далее.

int pot = A1; // назначаем вход А1 для чтения сигнала с потенциометра

int motor = 5; // к этому выходу подключаем затвор полевого тразнистора

analogWrite(motor, map (analogRead(pot), 0, 1023, 0, 255));

Функция map, которая используется в качестве второго аргумента функции analogWrite позволяет сократить код на несколько строчек. Её назначение преобразовать одни размерности в другие. Чтобы понять, как она работает рассмотрим её синтаксис:

map(value, fromLow, fromHigh, toLow, toHigh),

где: value – откуда брать величину, в приведенном выше примере мы её считываем функцией analogRead с пина, объявленного в переменной pot (это А1), fromLow – минимальное значение, которое будет участвовать в преобразовании (у нас это 0), fromHigh – максимальное значение для преобразования (у нас это 1023, потому что это максимальное значение, которое «видит» ардуина при чтении аналогового сигнала), toLow – в какое значение преобразовывать минимальное значение со входа, toHigh – в какое значение преобразовывать максимальное значение со входа (у нас это 255, потому что это максимальное число, которое можно записать в analogWrite).

То есть мы получаем любое число от 0 до 1023, а функция возвращает число от 0 до 255. Таким образом, у нас происходит преобразование, в общем-то, с сохранением величины в процентах (комментаторов прошу подсказать, как правильно назвать такое преобразование).

Заключение

ШИМ-регуирование с помощью ардуино реализуется достаточно просто. Оно с лёгкостью может использовать в самодельных радиоуправляемых моделях или роботах, а также для регулировки яркости каких-либо индикаторов и создания световых эффектов. Повторюсь, что для диммирования светильников и светодиодных лент он не очень хорошо подходит из-за низкой частоты.

Также отмечу, что при питании платы от одного источника питания, а нагрузки от другого, например, с большим напряжением, следует соединить их «минусы», иначе транзистор включаться не будет.

Ну и прилагаем видео, в котором иллюстрируется работа схемы рассмотренной в статье

Источник

Классификация и характеристики электродвигателей

Электродвигатель – устройство для преобразования электроэнергии во вращательное движение вращающейся части электрической машины. Преобразование энергии в двигателях происходит за счет взаимодействия магнитных полей обмоток статора и ротора. Эти электрические машины широко используются во всех отраслях промышленности, в качестве привода электротранспорта и инструментов, в системах автоматизации, бытовой техники и так далее.

Существует множество видов электродвигателей, различающихся по принципу действия, конструкции, исполнению и другим признакам. Рассмотрим основные типы этих электрических машин.

По принципу действия различают магнитоэлектрические и гистерезисные электрические машины. Несмотря на простоту конструкции, высокий пусковой момент, последние не получили широкого распространения. Эти электродвигатели имеют высокую цену, низкий коэффициент мощности, ограничивающие их применение. Подавляющее большинство выпускаемых электродвигателей – магнитоэлектрические.

По типу напряжения питания различают:

  • Электродвигатели постоянного тока.
  • Двигатели переменного тока.
  • Универсальные электрические машины.

По конструкции различают электродвигатели с горизонтально и вертикально расположенным валом. Корме того, электрические машины классифицируют по назначению, климатическому исполнению, степени защиты от попадания влаги и посторонних предметов, мощности и другим параметрам.

Читайте также:  Как заменить масло в двигателе москвич 412

Классы электродвигателей:

  • Постоянного тока
  • Бесщеточные ЕС (электронно-коммутируемые)
  • Со щетками
  • С последовательным возбуждением
  • С параллельным возбуждением
  • Со смешанным возбуждением
  • С постоянными магнитами
  • Переменного тока
  • Универсальные
  • Синхронные
  • Индукционные
  • Однофазные
  • Трехфазные

Таблица классификации электронных двигателей:

Электродвигатели постоянного тока

Двигатели постоянного тока широко применяются в качестве привода электротранспорта, промышленного оборудования, а также микропривода исполнительных механизмов. Такие электрические машины обладают следующими преимуществами:

  • Возможность регулировки частоты вращения путем изменения напряжения в обмотке возбуждения. При этом крутящий момент на валу ДПТ (двигатели постоянного тока) остается неизменным.
  • Высокий к.п.д. (коэффициент полезного действия) у машин постоянного тока несколько выше, чем у самых распространенных асинхронных двигателей переменного тока. При неполной нагрузке на валу к.п.д. ДПТ выше на 10-15%.
  • Возможность изготовления ДПТ небольших габаритов. Практически все используемые микроприводы рассчитаны на постоянный ток.
  • Простота схем управления. Для пуска, реверса и регулирования скорости и момента не требуется сложного электронного оборудования и большого количества аппаратов для коммутации.
  • Возможность работы в режиме генератора. Электродвигатели такого типа можно использовать в качестве источников постоянного тока.
  • Высокий пусковой момент. ДПТ используют в составе электроприводов кранов, тяговых и грузоподъемных механизмов, где требуется запуск под значительной нагрузкой.

ДПТ различают по способу возбуждения, они бывают:

  • С постоянными магнитами. Такие двигатели отличаются малыми габаритами. Основная область их применения – микроприводы.
  • С электромагнитным возбуждением.

Электрические машины с электромагнитами такого типа получили самое широкое распространение. Их классифицируют по способу подключения обмотки статора:

  • Двигатели с параллельным возбуждением. Обмотки якоря и статора в электрической машине такого типа соединены параллельно. Такие электрические машины не требуют дополнительного источника питания для обмотки возбуждения, скорость вращения ротора практически не зависит от нагрузки. Их используют для привода металлорежущих станков и другого оборудования.
  • Электродвигатели с последовательно включенной обмоткой статора. ДПТ этого типа имеют значительный пусковой момент. Их применяют в качестве привода электротранспорта и промышленных установок с необходимостью пуска под нагрузкой.
  • Двигатели с независимым возбуждением. Для питания обмотки статора таких электромашин используется независимый источник постоянного тока. ДПТ такого типа отличаются широким диапазоном регулирования скоростей.
  • Электрические машины со смешанным возбуждением. Электромагнит возбуждения в таких двигателях поделен на 2 части. Одна из них включена параллельно, вторая последовательно обмотке якоря. Электрические машины такого типа используются в механизмах и оборудовании, где необходим высокий пусковой момент, а также переменная и постоянная скорость при переменном моменте.

Электродвигатели переменного тока

Электрические машины такого типа широко используют для приводов всех типов технологического оборудования, электроинструментов, автоматических регуляторов. По наличию разности между скоростью вращения магнитного поля статора и частотой вращения ротора различают синхронные и асинхронные двигатели.

Асинхронные электродвигатели

Благодаря дешевизне и простоте конструкции электрические машины такого типа получили самое широкое распространение. Их принципиальное отличие – наличие так называемого скольжения. Это разность между частотой вращения магнитного поля неподвижной части электрической машины и скоростью вращение ротора. Напряжение на вращающейся части индуцируется за счет переменного магнитного поля обмоток статора двигателя. Вращение вызывает взаимодействие поля электромагнитов неподвижной части и магнитного поля ротора, возникающего под влиянием наведенных в нем вихревых токов. По особенностям обмоток статора выделяют:

  • Однофазные двигатели переменного тока. Двигатели такого типа требуют для пуска наличия внешнего фазосдвигающего элемента. Это может быть пусковой конденсатор или индуктивное устройство. Область применения однофазных двигателей – маломощные приводы.
  • Двухфазные электрические машины. Такие двигатели имеют 2 обмотки со смещенными относительно друг друга фазами. Их также используют для бытовых устройств и оборудования, имеющего небольшую мощность.
  • Трех- и многофазные электродвигатели. Наиболее распространенный тип асинхронных машин. Электрические двигатели такого типа имеют от 3-х и более обмоток статора, сдвинутых по фазе на определенный угол.

По конструкции ротора асинхронные электрические машины делят на двигатели с короткозамкнутым и фазным ротором.

Читайте также:  Как это сделано корабельный двигатель

Обмотка ротора электрических машин первого типа представляет собой несколько неизолированных стержней, выполненных из сплавов меди или алюминия, замкнутых с двух сторон кольцами (конструкция “беличья клетка”). Асинхронные двигатели такого типа обладают следующими преимуществами:

  • Достаточно простая схема пуска. Такие электрические машины можно подключать непосредственно к электрической сети через аппараты коммутации.
  • Допустимость кратковременных перегрузок.
  • Возможность изготавливать электрические машины высокой мощности. Двигатель такого типа не содержит скользящих контактов, препятствующих наращиванию мощности.
  • Относительно простое ТО и ремонт. Асинхронные электромашины имеют несложную конструкцию.
  • Невысокая цена. Двигатели асинхронного типа стоят дешевле синхронных машин и ДПТ.

Электрические машины с короткозамкнутым ротором имеют свои недостатки:

  • Предельная скорость вращения составляет не более 3000 об/мин при входе в синхронный режим.
  • Технически сложная реализация регулирования частоты вращения.
  • Высокие пусковые токи при прямом запуске.

Электродвигатели с фазным ротором частично лишены недостатков, присущих машинам с ротором конструкции “беличья клетка”. Вращающаяся часть электрической машины такого типа имеет обмотки, соединенные в схему “звезда”. Напряжение подводится к обмотке через 3 контактных кольца, закрепленных на роторе и изолированных от него.

Такие электродвигатели обладают следующими достоинствами:

  • Возможность ограничивать пусковые токи при помощи резистора, включенного в цепь электромагнитов ротора.
  • Больший, чем у электромашин с короткозамкнутым ротором, пусковой момент.
  • Возможность регулировки скорости.

Недостатками таких двигателей являются относительно большие габариты и масса, высокая цена, более сложный ремонт и сервисное обслуживание.

Синхронные двигатели переменного тока

Как и в асинхронных электродвигателях, вращение ротора в синхронных машинах достигается взаимодействием полей ротора и статора. Скорость вращения ротора таких электрических машин равна частоте магнитного поля, создаваемого обмотками статора.

Обмотка неподвижной части двигателя рассчитана на питание от трехфазного напряжения. К электромагнитам ротора подключается постоянное напряжение. Различают явнополюсные и неявнополюсные обмотки. В синхронных двигателях малой мощности используют постоянные магниты.

Запуск и разгон синхронной машины осуществляется в асинхронном режиме. Для этого на роторе двигателя имеется обмотка конструкции “беличья клетка”. Постоянное напряжение подается на электромагниты только после разгона до номинальной частоты асинхронного режима. Синхронные двигатели имеют следующие особенности:

  • Постоянная скорость вращения при переменной нагрузке.
  • Высокий к.п.д. и коэффициент мощности.
  • Небольшая реактивная составляющая.
  • Допустимость перегрузки.

К недостаткам синхронных электродвигателей относятся:

  • Высокая цена, относительно сложная конструкция.
  • Сложный пуск.
  • Необходимость в источнике постоянного напряжения.
  • Сложность регулировки скорости вращения и момента на валу.

Все недостатки электрических машин переменного тока можно исправить установкой устройства плавного пуска или частотного преобразователя. Обоснование выбора того или иного устройства обусловлено экономической целесообразностью и требуемыми характеристиками электропривода.

Универсальные двигатели

В отдельную группу выделяют универсальные электродвигатели, которые могут работать от сети переменного тока и от источников постоянного напряжения. Они используются в электроинструментах, бытовой технике, а также других маломощных устройствах. Конструкция такой электрической машины принципиально не отличатся от двигателя постоянного тока. Главное отличие – конструкция магнитной системы и обмоток ротора. Магнитная система состоит из изолированных друг от друга секций для снижения магнитных потерь. Обмотка ротора такой машины поделена на 2 части. При питании от переменного тока напряжение подается только на ее половину. Это делается в целях снижения радиопомех, улучшения условий коммутации.

К преимуществам таких машин относятся:

  • Высокая скорость вращения. Универсальные электродвигатели развивают скорость до 10 000 об/мин и более.
  • Питание от переменного и постоянного напряжения. Двигатели такого типа широко применяют для электроинструментов, имеющих дополнительные аккумуляторные батареи.
  • Возможность регулирования скорости без использования дополнительных устройств.

Однако, такие электромашины имеют свои недостатки:

  • Ограниченная мощность.
  • Необходимость обслуживания коллекторного узла.
  • Тяжелые условия коммутации при питании от переменного напряжения из-за наличия трансформаторной связи между обмотками.
  • Электромагнитные помехи при подключении к сети переменного тока.

Каждый тип двигателя имеет свои достоинства и недостатки. Выбор электрической машины для привода любого оборудования делается исходя из условий эксплуатации, требуемой частоты вращения, экономической целесообразности, типа нагрузки и других параметров.

Источник

Adblock
detector