Двигатель постоянного тока без щеток как это работает

Двигатель постоянного тока без щеток. Как это работает?

Для того, чтобы работа приборов была более надежной, более эффективной и менее шумной, в последнее время наметилась тенденция использовать бесщеточные двигатели постоянного тока. Они также легче по сравнению с щеточными двигателями при одной и той же выходной мощности.
В обычных двигателях постоянного тока щетки с течением времени изнашиваются, и могут вызывать искрение. Таким образом, двигатель с щетками не должен использоваться там, где требуется надежность и длительный срок службы. Давайте посмотрим, как работает бесщеточный двигатель постоянного тока. Ротор такого электродвигателя оснащен постоянными магнитами. Статор имеет расположение катушек, как показано на рисунке. Подавая постоянный ток в катушку, катушка станет электромагнитом. Работа двигателя основана на взаимодействии магнитных полей между постоянным магнитом и электромагнитом. В этом состоянии, когда катушка A находится под напряжением, противоположные полюса ротора и статора притягиваются друг к другу. Как только к ротору приближается катушки A, на катушку B подается напряжение. К ротору приближается катушка B, на катушку C подается напряжение. После этого на катушку A подается напряжение обратной полярности. Этот процесс повторяется, и ротор продолжает вращаться. Юмористическая аналогия, чтобы понять работу двигателя вспомним историю о осле и моркови. Осел старается догнать морковь, но еда двигается одновременно с ним и остается вне досягаемости.
Даже при том, что этот мотор работает, он имеет один недостаток. Как вы можете заметить, что в любой момент времени только одна катушка находится под напряжением. Две не работающих катушки значительно уменьшают выходную мощность двигателя. Но есть трюк, способный преодолеть эту проблему. Когда ротор находится в этом положении вместе с первой катушкой, которая тянет ротор, можно возбудить катушку позади него таким образом, что она тоже будет толкать ротор. В этот момент ток той же самой полярности пропускают через вторую катушку. Комбинированный эффект дает больше вращающего момента и мощности от двигателя.
Объединение сил также гарантирует, что у двигателя будет ровная и постоянная характеристика крутящего момента. При этой конфигурации, две катушки должны включаться отдельно, но, сделав небольшую модификации с обмоткой статора можно упростить этот процесс. Просто подключите свободные концы катушки вместе. При подаче питания на катушки А и В, через них пойдет ток. То же самое, как если бы мы подавали напряжение отдельно. Вот так он работает, но у вас, возможно появились сомнения: «Как мне узнать, на какую катушку статора подавать напряжение?» «Как подавать напряжение, чтобы получить непрерывное вращение от ротора?» Для этого мы используем электронный контроллер. Датчик A определяет положение ротора и на основании этой информации контроллер решает, на какие катушки подавать напряжение. Чаще всего для этой цели используется эффект датчика Холла.
До сих пор мы обсуждали конструкцию известную, как «внешний разгон». Конструкция «внутреннего разгона» также доступна на рынке. Мы надеемся, что вы почерпнули полезную информацию. Спасибо.
_

Источник

Бесколлекторный двигатель постоянного тока — принцип работы самого простого двухфазного типа

Коллекторные двигатели постоянного тока широко распространены в различных технических областях. Например, практически все ручные электроинструменты низкого и среднего ценового диапазона имеют коллекторные двигатели. Однако, основной недостаток таких двигателей заключается именно в наличии коллектора. Потому как на коллекторе происходят основные потери мощности электродвигателя. Но эти потери искупаются дешевизной изготовления коллекторно-щеточного узла.

Но ради увеличения КПД электродвигателя можно пойти и на удорожание его конструкции. В этом случае применяют бесколлекторные двигатели постоянного тока. Иногда такие электродвигатели называют бесконтактными двигателями. Отсутствие трущихся щёток позволяет повысить мощность и продлить срок службы двигателя.

Читайте также:  Киа венга температура двигателя

Разумеется, щеточно-коллекторный узел у таких двигателей отсутствует. Например, он может заменяться полупроводниковым коммутатором-переключателем. Такой коммутатор управляется с помощью специальных сигналов. Сигналы поступают с бесконтактного датчика положения ротора. Чаще всего в качестве датчика положения ротора применяют датчики Холла .

Основой датчика Холла является тонкая пластинка проводника или полупроводника. На четырех гранях этой пластинки находятся контактные площадки с выводами. На два противоположных вывода подается питание. С двух других выводов снимается выходной сигнал. Сигнал появляется в том случае, если на пластину действует магнитное поле. Причем направление индукции этого поля должно быть перпендикулярно плоскости пластины.

Здесь рассматривается наиболее простой вариант бесконтактного двигателя постоянного тока. У данного двигателя ротор является постоянным магнитом. На статоре электродвигателя располагаются четыре обмотки.

В бесколлекторном двигателе, в отличии от коллекторного, якорем является статор . У бесколлекторных двигателей статор-якорь может иметь как внешнее, так и внутреннее устройство. Примером бесколлекторного электродвигателя с внутренним статором может служить мотор-колесо для электрических велосипедов и самокатов. Однако, двухфазный электродвигатель постоянного тока может быть только с внешним статором. У двигателей с внутренним статором количество фаз должно быть не менее трех.

Для работы бесколлекторного двигателя необходимо, чтобы постоянное магнитное поле ротора увлекалось за вращающемся электромагнитным полем статора. То есть, происходят практически те же процессы, что и в коллекторном двигателе постоянного тока. Только достигаются они другими средствами. В процессе работы двигателя по двум противоположным обмоткам поочерёдно протекает электрический ток. При этом эти обмотки становятся двумя разными полюсами электромагнита. Датчики Холла устанавливаются в пазах обмоток двух смежных полюсов. Иначе говоря, датчики устанавливают со смещением по окружности статора на 90% относительно друг друга.

Магнитное поле ротора действует на один из датчиков Холла. То есть, на тот, который в данный момент расположен перпендикулярно этому магнитному полю. На контактах датчика появляется напряжение. То есть, с этого датчика поступает сигнал на открытие соответствующих транзисторов. Транзисторы открываются и благодаря этому по двум противоположным обмоткам начинает течь электрический ток. Две противоположные обмотки статора становится электромагнитами с разными полюсами. Каждый из полюсов статора притягивает противоположный полюс ротора. Ротор поворачивается и своим магнитным полем действует на следующий датчик Холла.

Датчик посылает сигнал на транзисторы. Транзисторы открываются и по двум следующим противоположным обмоткам статора начинает течь электрический ток. Обмотки становится электромагнитами. И каждым из своих полюсов притягивают противоположный полюс ротора. Ротор поворачивается и действует на другой датчик Холла. Все эти действия повторяются вновь и вновь. То есть, до тех пор пока на двигатель подается питание ротор вращается. Для изменения направления вращения электродвигателя изменяют полярность питания датчиков Холла.

Данный двигатель постоянного тока имеет два основных положения в процессе своего движения. То есть, изменение его вращения имеют две фазы. Потому подобный электродвигатель постоянного тока называется двухфазным. Разумеется, что он имеет устройство и принцип работы отличные от двухфазного двигателя переменного тока .

Вместо датчиков Холла в таких двигателях могут использоваться и другие виды датчиков. Например, оптические датчики. А также существуют бесколлекторные двигатели, которые и вовсе не имеют датчиков. В таких двигателях положение ротора определяется путем измерения напряжения на незадействованной в данный момент времени обмотке. Обычно двигатели без датчиков применяются, если старт происходит без нагрузки на валу.

Количество фаз бесконтактного электродвигателя может быть больше, чем две. Чем больше фаз, тем более плавнее вращается ротор. Но, с другой стороны, у таких двигателей более сложная система управления. К примеру, трехфазные двигатели постоянного тока получили наиболее широкое распространение. Потому как такая система наиболее оптимальна по соотношению сложности к эффективности. Бесколлекторные двигатели с двухполюсным ротором имеют наибольшую скорость вращения при наименьшем крутящем моменте. Электродвигатели постоянного тока с большим количеством полюсов имеют меньшую скорость вращения. Но зато у них больший крутящий момент.

Читайте также:  Почему на ниве горит ошибка двигателя

Для вашего удобства подборка публикаций

Спасибо за посещение канала, чтение заметки, упоминание в социальных сетях и других интернет — ресурсах, а также подписку, лайки, дизлайки и комментарии ( Лайки и дизлайки можно ставить не регистрируясь и не заходя в аккаунт )

Источник

Современные бесколлекторные двигатели постоянного тока

Благодаря существенному прогрессу в области полупроводниковой электроники и в технологии создания мощных неодимовых магнитов, широкое распространение получили сегодня бесколлекторные двигатели постоянного тока. Они применяются в стиральных машинах, пылесосах, вентиляторах, дронах и т. д.

И хотя идея касательно принципа работы бесколлекторного двигателя высказывалась еще в начале 19 века, она ждала своего часа до начала полупроводниковой эры, когда технологии стали готовы к практической реализации этой интересной и эффективной концепции, позволившей бесколлекторным двигателям постоянного тока шагать так широко, как это происходит сегодня.

В англоязычной версии двигатели данного типа именуются BLDC motor – Brushless Direct Current Motor — бесщеточный мотор постоянного тока. Ротор двигателя содержит постоянные магниты, а рабочие обмотки располагаются на статоре, то есть устройство BLDC мотора полностью противоположно тому, как это имеет место в классическом коллекторном двигателе. Управляется BLDC мотор электронным регулятором, который называют ESC — Electronic speed controller — электронный регулятор хода.

Электронный регулятор хода и высокий КПД

Электронный регулятор хода позволяет плавно варьировать электрическую мощность, подаваемую на бесколлекторный электродвигатель. В отличие от ранних, более простых версий резистивных регуляторов хода, которые просто ограничивали мощность путем включения в цепь последовательно с мотором активной нагрузки, превращающей избыточную мощность в тепло, электронный регулятор хода позволяет получить значительно более высокий КПД, не расходуя подводимую электрическую энергию на бесполезный нагрев.

Бесколлекторный двигатель постоянного тока можно классифицировать как самосинхронизируемый синхронный двигатель, в котором полностью исключен искрящий узел, требующий регулярного обслуживания — коллектор. Функцию коллектора несет на себе электроника, благодаря чему вся конструкция изделия сильно упрощается и становится компактнее.

Щетки заменены, по сути, на электронные ключи, потери в которых сильно меньше чем были бы при механической коммутации. Мощные неодимовые магниты на роторе позволяют добиться большего момента на валу. И греется такой двигатель меньше нежели его коллекторный предшественник.

В итоге КПД двигателя получается наилучшим, а показатели мощности на килограмм веса — выше, плюс достаточно широкий диапазон регулировки скорости вращения ротора и практически полное отсутствие генерируемых радиопомех. Конструктивно двигатели данного типа легко адаптируются для эксплуатации в воде и в агрессивных средах.

Электронный блок управления — очень важная и дорогостоящая часть бесколлекторного двигателя постоянного тока, без которой, однако, никак не обойтись. От данного блока двигатель получает питание, параметры которого одновременно влияют и на скорость, и на мощность, которую двигатель будет в состоянии развить под нагрузкой.

Даже если скорость вращения регулировать не нужно, все равно электронный блок управления необходим, ведь он несет на себе не только функцию управления, но также имеет силовую составляющую. Можно сказать, что ESC – это аналог частотного регулятора для асинхронных двигателей переменного тока, специально предназначенный для питания и управления бесколлекторным мотором постоянного тока.

Управление двигателем BLDC

Чтобы понять как происходит управление BLDC двигателем, сначала вспомним как работает коллекторный двигатель. В его основе принцип вращения рамки с током в магнитном поле.

Читайте также:  Сколько масла нужно заливать в двигатель газель 402

Каждый раз, когда рамка с током повернулась и нашла положение равновесия, коммутатор (щетки прижатые к коллектору) изменяет направление тока через рамку, и рамка движется дальше. Этот процесс повторяется при движении рамки от полюса к полюсу. Только вот в коллекторном двигателе таких рамок много и магнитных полюсов несколько пар, поэтому коллекторно-щеточный узел содержит не два контакта, а много.

Электронный блок управления бесколлекторным двигателем делает то же самое. Он изменяет полярность магнитного поля как только ротор необходимо провернуть дальше из положения равновесия. Только управляющее напряжение подается не на ротор, а на обмотки статора, и делается это при помощи полупроводниковых ключей в нужные моменты времени (фазы ротора).

Очевидно, что ток на обмотки статора бесколлекторного двигателя необходимо подавать в правильные моменты времени, то есть тогда, когда ротор находится в определенном известном положении. Для этого применяется один из следующих методов. Первый — на основе датчика положения ротора, второй — путем измерения ЭДС на одной из обмоток, которая в данный момент не получает питание.

Датчики бывают разными, магнитными и оптическими, наиболее популярны магнитные датчики на основе эффекта Холла. Второй способ (на основе измерения ЭДС) хотя и эффективен, однако он не позволяет осуществлять точное управление на низких скоростях и при старте. А вот датчики Холла обеспечивают возможность более точного управления во всех режимах. В трехфазных BLDC двигателях таких датчиков три штуки.

Двигатели без датчиков положения ротора применимы в тех случаях, когда старт мотора происходит без нагрузки на валу (вентилятор, пропеллер и т. п.). Если же старт происходит под нагрузкой, необходим мотор с датчиками положения ротора. В том и в другом варианте есть свои плюсы и минусы.

Решение с датчиком оборачивается более удобным управлением, но при выходе из строя хотя бы одного из датчиков, мотор придется разбирать, к тому же датчики требуют отдельных проводов. В варианте без датчика нет надобности в специальных проводах, но во время старта ротор будет раскачиваться туда-сюда. Если это недопустимо, необходимо ставить в систему датчики.

Ротор и статор, количество фаз

Ротор BLDC двигателя может быть наружным или внутренним, а статор, соответственно, внутренним или наружным. Статор изготавливают из магнитопроводящего материала, с количеством зубцов, которое нацело делится на количество фаз. Ротор может быть изготовлен необязательно из магнитопроводящего материала, но обязательно с жестко зафиксированными на нем магнитами.

Чем сильнее магниты — тем выше доступный вращающий момент. Количество зубцов статора не обязательно должно быть равно количеству магнитов на роторе. Минимальное количество зубцов равно количеству фаз управления.

Большинство современных бесколлекторных двигателей постоянного тока — трехфазные, просто в силу простоты такой конструкции и способа управления ею. Как и в асинхронных двигателях переменного тока, обмотки трех фаз соединяются здесь на статор «треугольником» либо «звездой».

Такие двигатели без датчиков положения ротора имеют 3 питающих провода, а двигатели с датчиками — 8 проводов: дополнительные два провода — для питания датчиков и три — сигнальные выводы датчиков.

Обмотка статора выполняется изолированным медным проводом так, чтобы сформировать магнитные полюса необходимого количества фаз, равномерно распределенные по окружности ротора. Количество отдельно стоящих полюсов на статоре для каждой фазы выбирается исходя из требуемой скорости вращения двигателя (и вращающего момента).

Низкооборотные двигатели с наружным ротором делают с большим количеством полюсов (и соответственно зубцов) на каждую фазу, чтобы получить вращение с угловой частотой значительно меньше частоты управляющего тока. Но даже в высокооборотных трехфазных моторах обычно не применяют количество зубцов меньше 9.

Источник

Adblock
detector