Двигатель асинхронный 220 в что это

Однофазный асинхронный двигатель с короткозамкнутым ротором с рабочим напряжением 220 вольт — устройство и принцип работы

Потребляемая мощность электроприборов в быту обычно невелика. А значит применение трехфазных потребителей становится излишним. Электроприборы в домах, квартирах и офисах применяются однофазные. Потому в быту для питания электроприборов наиболее часто используется однофазная электросеть напряжением 220-240 вольт. Разумеется, что в бытовых электроприборах применяются однофазные электродвигатели с рабочим напряжением 220 вольт. Очень часто таким двигателем является однофазный асинхронный двигатель с короткозамкнутым ротором.

Устройство асинхронного однофазного электродвигателя

Как и любой другой электрический двигатель, асинхронный однофазный двигатель состоит из двух основных частей. А именно, из ротора и статора. Статор является неподвижной частью асинхронного двигателя . Именно на контактные выводы обмотки статора подаётся питание однофазным переменным током с напряжением 220 вольт. А ротор — это подвижная (вращающаяся) часть асинхронного двигателя. Через ротор, посредством вала, двигатель соединяется с какой-нибудь механической нагрузкой. Как ротор, так и статор электродвигателя, оба состоят из стального сердечника и обмотки. Однофазный асинхронный электродвигатель по конструкции похож на трехфазный асинхронный двигатель. Основное отличие заключается в устройстве обмотки статора двигателя.

Короткозамкнутый ротор асинхронного однофазного электродвигателя

В подавляющем большинстве случаев, бытовые асинхронные однофазные электродвигатели имеют короткозамкнутый ротор. Короткозамкнутый ротор обычно изготавливают нижеописанным способом.

Сердечник ротора спрессовывают из множества круглых листов электротехнической стали. Каждый стальной лист изолируют друг от друга слоем лака. Такой способ изготовления сердечника применяется для уменьшения потерь электроэнергии. Если бы сердечники изготавливались из единого куска стали, то были бы большие потери на образование вихревых токов. То есть, электродвигатель потреблял бы больше электроэнергии, чем ему практически нужно для выполнения работы. А также ротор перегревался бы даже при небольших нагрузках. Однако, все же существует разновидность асинхронных двигателей с массивным ротором.

В итоге, получается конструкция цилиндрической формы с выполненными в ней пазами. Пазы параллельны друг другу. Однако, они не параллельны оси самого ротора. Чаще всего они имеют некоторый перекос направления относительно этой оси. Этот перекос уменьшает высшие гармонические ЭДС, вызванные пульсациями магнитного потока. Такие пульсации происходят из-за того, что магнитное сопротивление зубцов статора и ротора, образованных благодаря пазам, намного ниже магнитного сопротивления обмотки, которая находится в пазах.

То есть, часть ротора, на которой находится обмотка, имеет неоднородную структуру по своей окружности. Сначала сталь, потом алюминий, затем опять сталь и так далее. Потому и магнитное сопротивление на разных участках этой окружности очень отличается. А отсюда пульсации магнитного потока. А скосы позволяют свести к минимуму различие магнитных сопротивлений. И соответственно уменьшатся пульсации. Проще говоря, благодаря такому направлению пазов, работа асинхронного двигателя становится более плавной и менее шумной. К примеру, работа электродвигателя с ротором, у которого нет такого скоса у пазов для обмотки, будет сопровождаться сильным гудением или свистом.

В пазах находятся стержни из сплава алюминия. При изготовлении ротора алюминий впрессовывается или заливается в пазы. С двух сторон цилиндра ротора стержни соединяются (замыкаются) алюминиевыми кольцами. На кольцах могут располагаться лопасти для охлаждения электродвигателя. Алюминиевые стержни и кольца представляют собой обмотку ротора. Такой вид обмотки обычно называется — «беличья клетка». Однако, по форме она скорее напоминает колесо, в котором бегают белки для соблюдения моциона. Обмотка типа «беличья клетка» может иметь некоторые разновидности в своем устройстве.

Статор асинхронного однофазного электродвигателя

Сердечник статора также набран из отдельных стальных листов. По той же причине, что и сердечник ротора. И также на сердечнике статора имеются пазы. В пазах расположена обмотка статора. Но в отличии от обмотки ротора, эта обмотка намотана в пазах медной обмоточной проволокой. Питание переменным током напряжением 220 вольт подключают к обмотке статора. А то, каким образом подключают питание, зависит от особенностей принципа работы однофазного асинхронного электродвигателя с короткозамкнутым ротором.

Читайте также:  Двигатель ady плавают обороты

Принцип работы асинхронного однофазного двигателя

У однофазного асинхронного электродвигателя на статоре обычно находятся две обмотки. Потому как одной обмотки для работы подобного электродвигателя не достаточно. Переменный ток, протекающий по одной обмотке, создает не вращающийся, а пульсирующий магнитный поток. Для удобства объяснения происходящего принято считать этот пульсирующий поток за два вращающихся в противоположные стороны магнитных потока (Φпр и Φобр).

Считается, что благодаря электромагнитной индукции два этих магнитных потока наводят в обмотке ротора две противоположные ЭДС. А эти электродвижущие силы образуют в обмотке ротора два противоположно протекающих тока. То есть, ток прямой и ток обратный (Iпр и Iобр ). Также считается, что каждый из магнитных потоков обуславливает для ротора вращающий электромагнитный момент (Mпр и Mобр). Принято считать, что оба эти вращающих момента равны (Mпр = Mобр). Потому пусковой момент для ротора однофазного асинхронного двигателя равен нулю. Иначе говоря, такой электродвигатель не может самостоятельно запуститься при подаче на рабочую обмотку статора питания.

Чтобы асинхронный однофазный двигатель запустился, нужно во время пуска создать в нем вращающееся магнитное поле. А ведь в электродвигателе уже существует два противоположно вращающихся магнитных поля. То есть, задача состоит в том, чтобы подавить одно из вращающихся магнитных полей. И тогда останется всего один вращающийся магнитный поток. И мы придадим первоначальное вращение ротору. Для этого используется вторая, вспомогательная обмотка и фазосмещающий элемент.

Считается, что вспомогательная обмотка также производит два противоположно вращающихся магнитных поля. Причем, вспомогательная обмотка расположена в стартере особым образом. Ее расположение позволяет взаимно подавлять по одному из магнитных потоков главной и вспомогательной обмотки, вращающихся в одном направлении. А два других потока при этом, наоборот, взаимно усиливают друг друга.

А также, токи в обмотке статора должны быть сдвинуты по фазе относительно друг друга. Для этого и применяется какой-либо фазосмещающий элемент. К примеру, индуктивное сопротивление , активное сопротивление или ёмкость. Чаще всего используется конденсатор.

В результате, на статоре остается только один магнитный поток, который вращается в одну сторону. Этот магнитный поток пронизывает обмотку ротора и индуктирует в ней ЭДС. Электродвижущая сила образует в обмотке ротора протекание электрического тока. Этот электрический ток , в свою очередь, вызывает образования магнитного потока ротора. Другими словами, появляются два магнитных поля неподвижные относительно друг друга. И это, согласно третьему закону электромеханики, приводит к электромеханическому преобразованию. Взаимосвязь потоков придает пусковой момент ротору. То есть, при подаче питания произойдет самостоятельный запуск электродвигателя.

Вспомогательная обмотка располагается перпендикулярно рабочей. То есть, осуществляется сдвиг фазы тока в обмотках на четверть периода. Благодаря такому расположению обмоток и такому сдвигу фаз происходит самостоятельный запуск электродвигателя. (Такого эффекта в трехфазном двигателе добиваются, располагая три обмотки под углом 120°. И там это приводит к сдвигу фаз электрического тока на треть периода.)

При разгоне ротора до определенной скорости, вспомогательную обмотку можно отключить. Ротор все равно продолжит вращаться. Осуществление отключения вспомогательной обмотки обычно проводится центробежным выключателем. То есть, во время пуска двигатель является двухфазным, а затем становится однофазным.

Для того, чтобы получить нужный вращающийся магнитный поток с помощью вспомогательной обмотки, нужно соблюдать два условия:

  • Во-первых, магнитодвижущие силы обоих обмоток должны быть равны и сдвинуты относительно друг друга электрически на 90°.
  • Во-вторых, токи в обмотке статора должны быть сдвинуты по фазе относительно друг друга на 90°. То есть, необходим сдвиг фазы тока в обмотках на четверть периода.

Если выполнять эти условия, то вращающееся поле статора будет круговым. Это обеспечивает наибольший вращающий момент. При нарушении условий вращающееся поле становится эллиптическим. Такое поле ухудшает пуск электродвигателя и создает для ротора тормозной момент.

Читайте также:  Какие двигатели ставятся на шевроле круз

Если бы не было вспомогательной обмотки, пришлось бы каждый раз электродвигатель запускать вручную. То есть, нужно было бы придавать ему первоначальное вращение. Причем, в какую сторону это вращение бы было придано, в ту сторону и вращался бы ротор. После вращательного толчка он вращался бы самостоятельно, до отключения его от питания.

В асинхронном электродвигателе скорость вращения ротора всегда меньше чем скорость вращения магнитного поля статора. Иначе говоря, магнитное поле статора и ротор вращаются не одновременно и не синхронно. Их вращение не совпадает по времени. Из-за этой особенности подобные двигатели и названы асинхронными.

Однофазные асинхронные двигатели с короткозамкнутым ротором надежны, потому как просты в конструкции. Они дешевы по стоимости изготовления по сравнению с другими видами электродвигателей. А также, удобны для ремонта и обслуживания. Благодаря всем этим преимуществам, однофазный асинхронный электродвигатель находит свое применение во многих бытовых электроприборах.

Конечно, они имеют свои недостатки. Например, при тех же размерах однофазные асинхронные двигатели развивают мощность составляющую максимум 50% от мощности трехфазных асинхронных двигателей. Но для бытовых условий данный недостаток несущественен. Потому как большие мощности в домашних условиях и не нужны. Обычно подобные электродвигатели изготавливают мощностью до 1 киловатта.

Для вашего удобства подборка публикаций

Источник

Как подключить асинхронный двигатель на 220В

Так как питающие напряжения у различных потребителей могут различаться друг от друга, возникает необходимость переподключения электрооборудования. Сделать подключение асинхронного двигателя на 220 вольт безопасным для дальнейшей работы оборудования достаточно просто, если следовать предложенной инструкции.

На самом деле это не является невыполнимой задачей. Если сказать коротко, то все, что нам нужно, это правильно подключить обмотки. Существует два основных типа асинхронных двигателей: трехфазные с обмоткой звезда – треугольник, и двигатели с пусковой обмоткой (однофазные). Последние используются, например, в стиральных машинах советской конструкции. Их модель АВЕ-071-4С. Рассмотрим каждый вариант по очереди.

Асинхронный двигатель переменного тока имеет очень простую конструкцию по сравнению с другими видами электрических машин. Он довольно надежен, чем и объясняется его популярность. К сети переменного напряжения трехфазные модели включаются звездой или треугольником. Такие электродвигатели также различаются значением рабочего напряжения: 220–380 в, 380–660 в, 127–220 в.

Такие электродвигатели применяются на производстве, так как трехфазное напряжение чаще всего используется именно там. И в некоторых случаях бывает, что вместо 380 в есть трехфазное 220. Как их включить в сеть, чтобы не спалить обмотки?

Переключение на нужное напряжение

Для начала необходимо убедиться в том, что наш двигатель имеет нужные параметры. Они написаны на бирке, прикрепленной у него сбоку. Там должно быть указано, что один из параметров – 220в. Далее, смотрим подключение обмоток. Стоит запомнить такую закономерность схемы: звезда – для более низкого напряжения, треугольник – для более высокого. Что это означает?

Увеличение напряжения

Предположим, на бирке написано: Δ/Ỵ220/380. Это значит, что нам нужно включение треугольником, так как чаще всего соединение по умолчанию – на 380 вольт. Как это сделать? Если электродвигатель в борне имеет клеммную коробку, то несложно. Там есть перемычки, и все, что нужно – переключить их в нужное положение.

В данной ситуации это сложностей не вызывает. Главное помнить, что есть начало и конец катушек. К примеру, возьмем за начало концы, которые были выведены в борно электродвигателя. Значит то, что спаяно – это концы. Теперь важно не перепутать.

Подключаем так: начало одной катушки соединяем с концом другой, и так далее.

Как видим, схема простая. Теперь двигатель, который был соединен для 380, можно включать в сеть 220 вольт.

Уменьшение напряжения

Предположим, на бирке написано: Δ/Ỵ 127/220. Это означает, что нужно подсоединение звездой. Опять же, если есть клеммная коробка, то все хорошо. А если нет, и включен наш электродвигатель треугольником? А если еще и концы не подписаны, то как их правильно соединить? Ведь здесь тоже важно знать, где начало намотки катушки, а где конец. Есть некоторые способы решения этой задачи.

Читайте также:  Какой расход масла на 402 двигателе

Для начала разведем все шесть концов в стороны и омметром найдем сами статорные катушки.

Возьмем скотч, изоленту, еще что-нибудь из того, что есть, и пометим их. Пригодится сейчас, а может быть, и когда-нибудь в будущем.

Берем обычную батарейку и подсоединяем к концам а1-а2. К двум другим концам (в1-в2) подсоединяем омметр.

В момент разрыва контакта с батарейкой стрелка прибора качнется в одну из сторон. Запомним, куда она качнулась, и включаем прибор к концам с1-с2, при этом не меняем полярность батарейки. Проделываем все заново.

Если стрелка отклонилась в другую сторону, тогда меняем провода местами: с1 маркируем как с2, а с2 как с1. Смысл в том, чтобы отклонение было одинаковым.

Теперь батарейку с соблюдением полярности соединяем с концами с1-с2, а омметр – на а1-а2.

Добиваемся того, чтобы отклонение стрелки на любой катушке было одинаковым. Перепроверяем еще раз. Теперь один пучок проводов (например, с цифрой 1) у нас будет началом, а другой – концом.

Берем три конца, например, а2, в2, с2, и соединяем вместе и изолируем. Это будет соединение звездой. Как вариант, можем вывести их в борно на клеммник, промаркировать. На крышку наклеиваем схему соединения (или рисуем маркером).

Переключение треугольник – звезда сделали. Можно подключаться к сети и работать.

Однофазный

Теперь поговорим еще об одном виде асинхронных электродвигателей. Это однофазные конденсаторные машины переменного тока. У них две обмотки, из которых, после пуска, работает только одна из них. Такие двигатели имеют свои особенности. Рассмотрим их на примере модели АВЕ-071-4С.

По-другому они еще называются асинхронными двигателями с расщепленной фазой. У них на статоре намотана еще одна, вспомогательная обмотка, смещенная относительно основной. Пуск производится при помощи фазосдвигающего конденсатора.

Схема однофазного асинхронного двигателя

Из схемы видно, что электрические машины АВЕ отличаются от своих трехфазных собратьев, а также от коллекторных однофазных агрегатов.

Всегда внимательно читайте, что написано на бирке! То, что выведено три провода, абсолютно не значит, что это для подключения на 380 в. Просто спалите хорошую вещь!

Включение в работу

Первое, что нужно сделать, это определить, где середина катушек, то есть, место соединения. Если наш асинхронный аппарат в хорошем состоянии, то это сделать будет проще – по цвету проводов. Можно посмотреть на рисунок:

Если все так выведено, то проблем не будет. Но чаще всего приходится иметь дело с агрегатами, снятыми со стиральной машины неизвестно когда, и неизвестно кем. Здесь, конечно, будет сложнее.

Стоит попробовать вызвонить концы при помощи омметра. Максимальное сопротивление – это две катушки, соединенные последовательно. Помечаем их. Дальше, смотрим на значения, которые показывает прибор. Пусковая катушка имеет сопротивление больше, чем рабочая.

Теперь берем конденсатор. Вообще, на разных электрических машинах они разные, но для АВЕ это 6 мкФ, 400 вольт.

Если точно такого нет, можно взять с близкими параметрами, но с напряжением, не ниже 350 В!

Давайте обратим внимание: кнопка на рисунке служит для пуска асинхронного электродвигателя АВЕ, когда он уже включен в сеть 220! Другими словами, должно быть два выключателя: один общий, другой – пусковой, который, после его отпускания, отключался бы сам. Иначе спалите аппарат.

Если нужен реверс, то он делается по такой схеме:

Если все сделано правильно, тогда будет работать. Правда, есть одна загвоздка. В борно могут быть выведены не все концы. Тогда с реверсом будут сложности. Разве что разбирать и выводить их наружу самостоятельно.

Вот некоторые моменты, как подсоединять асинхронные электрические машины к сети 220 вольт. Схемы несложные, и при некоторых усилиях вполне возможно все это сделать собственными руками.

Источник

Adblock
detector