Давление впрыска в инжекторного двигателя

Какая система впрыска бензиновых двигателей лучше?

Рассмотрим, как устроены системы впрыска бензиновых двигателей, как они работают, каковы их виды, в чём особенности центрального, коллекторного и непосредственного впрыска.

Системы впрыска топлива бензиновых двигателей – это системы для дозированной подачи бензина в ДВС. Тип устройства, характеристика системы влияет на ряд важных показателей. Это экологический класс двигателя, его мощность, топливная эффективность.

Устройство системы впрыска бензинового двигателя может иметь различные конструктивные решения и модификации. О них мы расскажем, останавливаясь на конкретных видах систем впрыска.

Варианты топливных систем бензиновых двигателей

Впрыск топлива в воздушный поток может происходить как за счёт разрежения, так и за счёт избыточного давления. Например, в карбюраторе впрыскивание происходит за счёт разрежения, а в большинстве современных систем — за счёт избыточного давления.

По расположению распылителя впрыск может быть:

  • центральным (например, наддроссельный впрыск),
  • распределённый или коллекторный (осуществляется отдельной форсункой в предкамеру, расположенную перед впускным клапаном каждого цилиндра двигателя),
  • непосредственный (осуществляется напрямую в камеры сгорания, отдельными форсунками), встречается в разных вариациях, характерен для современных автомобилей.

Варианты топливных систем бензиновых двигателей (R R. Bosch)

Конструктивное решение с карбюраторами

Дольше всего человечество знакомо с подачей топлива посредством карбюратора. И не потому, что такие решения лучшие, а потому что они – первые. И через множество лет это были единственно доступные системы. Карбюратор был неотъемлемой частью топливной системы на протяжении сотни лет. Нельзя сказать, что сейчас карбюраторы полностью исчезли из жизни, но на легковой и коммерческий транспорт карбюраторы ставить перестали. Их можно увидеть только на средствах малой механизации, которые применяются для садовых, строительных работ.

Автопром же перестал выпускать машины с карбюраторной системой еще в 90-е годы прошлого века.

Принцип их действия основан на всасывании топлива в поток воздуха, проходящего через сужение карбюратора. увеличение скорости движения воздуха в месте сужения воздушного канала формирует разрежение воздуха.

Объём воздуха, который проходит через сужение воздушного канала, пропорционален объёму топлива, поступающего через распылитель карбюратора. Благодаря этому несложно в автоматическом режиме поддерживать требуемое отношение топлива к воздуху.

Как работает устройство?

  • Топливо из бака выбирает насос (управляемый механически или электрически – в зависимости от модели).
  • ДВС запускается, и поток воздуха, проходящий через сужение воздушного канала карбюратора, создает разрежение.
  • В смесительную камеру карбюратора поступает топливо.
  • Жиклер (калиброванное отверстие) дозирует топливо.

С точки зрения работы всё достаточно просто. Так почему же карбюраторы уходят в историю?

Здесь достаточно много причин:

  • Низкая экономичность, а соответственно, и низкий уровень топливной эффективности.
  • Проблемы при переменных режимах работы, снижающие динамические качества- автомобиля.
  • Прямая зависимость от расположения двигателя в автомобиле.
  • Выброс в окружающую среду большого количества вредных веществ (несоответствие нормативам эмиссии газообразных вредных выбросов в атмосферу).

На смену карбюратору пришла система так называемого «над дроссельного впрыска» топлива. Она также известна как моновпрыск или система центрального впрыска.

Принцип базируется на впрыске топлива одной форсункой, установленной на впускном коллекторе двигателя.

Самыми популярными конструкциями системы центрального впрыска являются решения Mono-Jetronic от R. R. Bosch и Opel-Multec (как нетрудно догадаться из названия, это решение корпорации Opel).

Появление моновпрыска приходится на середину 70-х годов 20-го века. В то время системой Mono-Jetronic стали оснащать автомобили Volkswagen и Audi.

Главной задачей при разработке моновпрыска стало нахождение альтернативы карбюраторной системе впрыска. Важно было найти более эффективную систему топливоподачи, которая смогла бы удовлетворить возросшим экологическим требованиям.

Mono-Jetronic: конструктивные элементы

  • Регулятор давления. Способен поддержать на стабильном уровне рабочее давление в системе впрыска, а после выключения ДВС сохранить остаточное давление в системе . Это важно для облегчения пуска, создание барьеров против образования паровых пробок.
  • Электромагнитный клапан (форсунка). Обеспечивает импульсный впрыск топлива. Управление клапаном осуществляется посредством электросигнала. Он идёт от блока управления.
  • Дроссельная заслонка. Регулятор объема поступающего воздуха.
  • Привод. Он ответственный за работу дроссельной заслонки.
  • Электронный блок управления. «Мозг», синхронизатор.

Входные датчики (момента впрыска, положения дроссельной заслонки, оборотов двигателя, концентрации кислорода и т.д.).

В 70-е годы появились и системы распределительного впрыска, основанные на подаче топлива отдельной форсункой в предкамеру, расположенную перед впускным клапаном каждого цилиндра двигателя. Впрыск может быть при этом может быть как импульсным, так и непрерывным.

Мы остановимся на решении K-Jetronic производителя Robert R. Bosch с непрерывным впрыском. K-Jetroniс активно присутствовала на рынке с 1973-го по 1995 годы. Сначала K-Jetroniс выпускалась с механической системой дозирования. С 1982 года — с электронной начинкой и электронным управлением дозирования. Начиная с версий (модификаций) с электронным управлением система стала называться KE-Jetroniс.

Читайте также:  Тюнинг бокс для бензинового двигателя

Экономические характеристики автомобилей, их уровень топливной эффективности был существенно улучшен, уровень выбросов вредных веществ в выхлопе также снизился.

В системах K/KE-Jetronic впрыск топлива осуществлялся непрерывно в смесительную камеру перед впускным клапаном. При этом количественное дозирование топлива, поступающего в поток воздуха, производилось за счет взаимосвязанных узлов «расходомер – дозатор».
Помимо дозатора-распределителя обязательный элемент решения – дроссельная заслонка, расположенная за дозатором, у первых версий были вакуумно-механические клапаны коррекции топлива(запуск клапанов в работу возможен как от терморегуляторов, так от разряжения воздуха во впускном коллекторе), в поздних модификациях появились электрические клапаны коррекции топлива. Кроме того, системы стали оснащать кислородным датчиком (лямбда-зондом). Огромным плюсом схемотехнического решения стало то, что система впрыска могла быть оснащена катализаторам-, но к уровню надёжности были существенные вопросы.

Дискретный впрыск топлива

Новой эрой стал дискретный впрыск топлива. Первой здесь стала электронная система распределенного впрыска топлива L-Jetronic – опять-таки от R. R. Bosch. С появлением этого решения стало возможным говорить о качественной управляемости, безотказности, надёжности. Да, сразу же стало ясно, что это средний и высокий ценовой сегмент. Поэтому долгое время системы дискретного впрыска топлива сосуществовали с системами непрерывного распределительного впрыска типа K/KE-Jetronic.

Но постепенно L-Jetronic обрела массовость. Её стал активно использовать практически весь европейский автопром. Явные плюсы оценили и водители, и персонал автосервиса: повысилась топливная экономичность авто. Для обслуживания перестали быть нужны сложные навыки (в первую очередь, это стало возможным за счёт того, что отпала надобность выполнять механические настройки).

L-Jetronic несколько раз модернизировалась и уверенно держалась на рынке до появления стандарта Евро-3. После чего более актуальными стали решения на основе термоанемометрических датчиков массметра (массового расхода воздуха). В частности, популярность приобрела модификация LH-Jetronic .

У новой разработки стала доступна индивидуальная регулировка подачи топлива в каждый из цилиндров

Объединяющая черта систем Mono-Jetronic, L-Jetronic, LH-Jetronic состоит в том, это все эти решения управляют только впрыском топлива, при этом для воспламенения топлива задействована система зажигания с модулем электронного управления.

Устройства, в которых система и зажигания и впрыск были синхронизированы и объединены, корпорация R.R. Bosch начала выпускать с 1979 года.

Ярким примером решения с объединёнными системами впрыска и зажигания – стала система Motronic от R.R. Bosch.
Она существовала в нескольких модификациях, появившихся в 90-е годы 20-го века. В эти годы в их конструкции входили механические расходомеры воздуха. Но вскоре вместо них стали использоваться термоанемометрические датчики-расходомеры, расширились возможности для самодиагностики.

Правда, полностью удовлетворить запросам диагноста системы не могли, поскольку протокол выявления неисправностей не обладал высокой результативностью. В последующих модификациях эта проблема была успешно решена.

Но самым революционным решением Motronic стало появление датчика абсолютного давления во впускном коллекторе (MAP-sensor).

Использование MAP-сенсора в системе управления двигателем позволило готовить качественную топливовоздушную смесь, состав которой близок к желаемому, и, главное, не сложно соблюсти европейские требования к выхлопам автомобилей.

Но для выхода на американский рынок даже этого было недостаточно. По стандартам США в топливной системе должна быть обязательная система контроля утечек паров топлива из бака. Так появилось инновационное решение Motronic M5. С ним появились все условия для того, чтобы исключить эксплуатацию автомобиля с потерявшей герметичность пробкой заливной горловины или неисправной системой вентиляции топливного бака.

Кроме того, эта система соответствует требованиям самого строгого протокола самодиагностики OBD-II/CARB.

А благодаря электроуправлению дроссельной заслонкой отлажено взаимодействие между системой управления двигателем и системой управления тягой на ведущих колёсах (системой дифференциального торможения).

Системы непосредственного впрыска

Особое место среди систем впрыска бензиновых двигателей получили системы непосредственного впрыска.
Их принцип действия основан на том, что топливо посредством инжектора распыляется прямо в цилиндр двигателя. Это важно для достижения топливной экономичности.

Элементы бензиновой системы непосредственного впрыска:

Плунжерный насос. Подаёт топливо в рампу, соединённую с форсунками.

  • Регулятор давления топлива. Поддерживает стабильное рабочее давление в топливной рампе. Топливная рампа. Здесь непосредственно происходит процесс распределения топлива по форсункам.
  • Предохранительный клапан на рампе. Защищает рампу от предельных давлений.

Датчик высокого давления. Замеряет давление в рампе, подаёт сигнал блоку управлением двигателя на коррекцию давления.
Согласование взаимодействия узлов осуществляется посредством электронной системы управления двигателем. От блока электронного управления поступают команды на исполнительные механизмы

Интересная деталь! Если среди дизельных систем впрыска такие топливные системы были популярны давно, то среди бензиновых распространение получили не сразу. Причина элементарно проста: бензин в отличие от дизельного топлива является плохой смазкой, что вызывало быстрый износ» топливного насоса.

Но с развитием технологий уплотнений разработчики снова смогли заняться бензиновыми системами с прямым впрыском топлива. Система непосредственного впрыска может обеспечивать несколько видов смесеобразования: послойное, однородное (гомогенное), и стехиометрическое. Послойное смесеообразование актуально при малых и средних оборотах, стехиометрическое и гомогенное – при сверхвысоких оборотах, а также при средних и высоких нагрузках.

Читайте также:  Как поставить на учет автомобиль с контрактным двигателем без документов

Самые популярные решения – с послойным смесеобразованием. Их хорошо знают по названию FSI и TFSI (у Volkswagen и у Ауди). Буква “T” в названии свидетельствуют о наличии турбокомпрессора, то есть двигатель, как именуется в просторечии — “турбирован”.

В цилиндр таких бензиновых систем впрыска поступает небольшое количество топлива. Тщательная организация потока воздуха в цилиндре (его траектория движения, подобная «кувырку) и удачно подобранное время впрыска топлива в цилиндр создают все условия, чтобы это небольшое количество топлива было подано к электродам свечи зажигания, и произошло воспламенение этой порции горючей смеси.

Почему на эту “турбированную” бензиновую систему впрыска не переходят повсеместно. К сожалению, актуальна такая проблема, как «турбояма», которая появляется при резком нажатии на педаль газа.

Этот недостаток полностью устранен при наличии дополнительного наддувочного агрегата с электроприводом. Такие системы недёшевы. Но оперативно выйти на режим максимальной мощности, избегая «турбоям» при резком нажатии педали на газ – не проблема. Прямой впрыск SC-E актуален, например, для использования на спортивных автомобилях.

Очень высокий интерес – и к битопливным (бинарным) система с газотурбинным наддувом. При работе на бензине можно достичь высокого крутящего момента, а при работе на газе — высокой экономичности. Параметры применяемого топлива прописываются в постоянной памяти. Если нужно заменить бензин на альтернативное топливо, изменяется программа смесеобразования. Это очень удобно.

Какой впрыск лучше?

Очень часто спорят: какой впрыск лучше. Дешевле всего обойдутся решения, ориентированные на распределённый впрыск. Подкупает и то, что они не требовательны к качеству топлива.

Если вам важно, чтобы была высокая топливная эффективность при минимальных значениях вредных выбросов, однозначно стоит выбирать непосредственный впрыск. Да, эти решения дороже. Но лучше заплатить больше единожды, чем постоянно “съедать” лишнее топливо.
Кстати, дороговизна решения связана, главным образом, с тем, что производителям пришлось внести кардинальные изменения в конструкцию головок цилиндров, однако в ремонте эти двигатели значительно дороже простых и надёжных двигателей с распределённым предкамерным впрыском топлива.

Не просто изучить топливные системы, а попрактиковаться работать в поиске различных неисправностей в них вам поможет специализированный тренажёр на платформе ELECTUDE . Отличное подспорье для автомобильных механиков и диагностов.

Источник

Основы инжекторных систем

Данная статья позволит понять принцип работы инжекторных систем.

Основное отличие инжекторной системы подачи топлива от карбюраторной — подача топлива осуществляется путем принудительного впрыска топлива с помощью форсунок во впускной коллектор или в цилиндр.

Моновпрыск — одна форсунка на все цилиндры, расположенная, как правило, на месте карбюратора (на впускном коллекторе). Моновпрыски отличались простотой и очень высокой надежностью, прежде всего из-за того, что форсунка находится в относительно комфортном месте, в потоке холодного воздуха.

Распределённый впрыск , или многоточечный впрыск — каждый цилиндр обслуживается отдельной изолированной форсункой во впускном коллекторе вблизи впускного клапана. В то же время различают несколько типов распределённого впрыска:

Одновременный — все форсунки открываются одновременно.

Попарно-параллельный — форсунки открываются парами, причём одна форсунка открывается непосредственно перед тактом впуска, а вторая перед тактом выпуска. В связи с тем, что за попадание топливовоздушной смеси в цилиндры отвечают клапаны, это не оказывает сильного влияния. В современных моторах используется фазированный впрыск, попарно-параллельный используется только в момент запуска двигателя и в аварийном режиме при поломке датчика положения распределительного вала (датчик фаз).

Фазированный впрыск — каждая форсунка управляется отдельно и открывается непосредственно перед тактом впуска.

Непосредственный впрыск — впрыск топлива происходит прямо в камеру сгорания.

В блок управления при работе системы поступает со специальных датчиков информация о следующих параметрах:

— положении и частоте вращения коленчатого вала;

— массовом расходе воздуха двигателем;

— температуре охлаждающей жидкости;

— положении дроссельной заслонки;

— содержании кислорода в отработавших газах (в системе с обратной связью);

— наличии детонации в двигателе;

— напряжении в бортовой сети автомобиля;

— положении распределительного вала (в системе с фазированным впрыском топлива);

— температуре входящего воздуха.

На основе полученной информации ЭБУ управляет следующими системами:

— топливоподачей (форсунками и электробензонасосом),

— регулятором холостого хода,

— адсорбером системы улавливания паров бензина (если эта система есть на автомобиле),

— вентилятором системы охлаждения двигателя,

Синхронизация работы всех систем в инжекторе, определение начала отсчета и количества оборотов двигателя осуществляется при помощи индукционного датчика (может располагаться на коленвалу или распределителе зажигания) или датчика Холла (обычно расположен на распределителе зажигания). При выходе из строя этих датчиков, работа инжекторной системы не возможна (автомобиль самостоятельно двигаться не может).

Топливовоздушная смесь (ТВС) — мелкодисперсная смесь атмосферного воздуха и жидкого топлива с небольшим включением парообразной фазы. Именно она, сгорая в цилиндрах двигателя, придает поступательное движение поршням и обеспечивает движение автомобиля.

Читайте также:  Как установить двигатель исузу на уаз

В зависимости от своей структуры, ТВС может быть гомогенной (однородной по своему составу), или обладать слоистой структурой. В зависимости от вида нагрузки, заложенных параметров экономии топлива, и требуемого состава выхлопных газов (содержания вредных веществ и окислов азота), система впрыска топлива самостоятельно выбирает наиболее оптимальную структуру топливно-воздушной смеси.

Эмпирическая формула дает определение «нормальной» ТВС, как смеси 14,7 килограмм атмосферного воздуха и 1 килограмма жидкого топлива. Топливная смесь, количество воздуха в которой больше указанного в соотношении, называется бедной, и, соответственно, богатой, при меньшем количестве воздуха.

бедная — воздуха > 14,7

Попытка уменьшить расход топлива путем регулировки топливной системы, зачастую приводит к неприятным последствиям. Увеличение количества воздуха в топливной смеси повышает температуру горения и приводит к преждевременным поломкам двигателя. Прогорание поршневых колец и эрозия стенок цилиндров – обычное дело при езде на обедненной ТВС. При все большем обеднении смеси наблюдается снижение мощности двигателя, при увеличении нагрузки появляются «провалы». Движение автомобиля становится дерганным, малейший подъем может стать непреодолимым препятствием. При достижении соотношения 30 к 1 мотор начинает глохнуть.

Чрезмерное обогащение смеси не превратит стандартную модель в гоночный болид. При уменьшении содержания воздуха в ТВС двигатель начинает работать с перебоями, падает мощность, катастрофически возрастает расход топлива. По достижении определенной пропорции двигатель невозможно будет запустить. Скорость горения богатой смеси снижена, а потому ее догорание происходит уже в глушителе.

Стехиометрические отношения для различных типов топлива будут следующими:

— газ природный — 17,2:1

Т.к. плотность воздуха зависит от температуры и давления, то во многих инжекторных системах идет корректировка ТВС по температуре всасываемого воздуха и давлению.

+35 град — 1,1455 кг/м3

+30 град — 1,1644 кг/м3

+25 град — 1,1839 кг/м3

+20 град — 1,2041 кг/м3

+15 град — 1,2250 кг/м3

+10 град — 1,2466 кг/м3

+5 град — 1,2690 кг/м3

0 град — 1,2920 кг/м3

-5 град — 1,3163 кг/м3

-10 град — 1,3413 кг/м3

-15 град — 1,3673 кг/м3

-20 град — 1,3943 кг/м3

-25 град — 1,4224 кг/м3

Красная линия — зависимость от высоты отношения плотности воздуха на этой высоте к плотности воздуха на уровне моря, зеленая линия — зависимость от высоты отношения давления воздуха на этой высоте к давлению воздуха на уровне моря, синия линия — зависимость от высоты отношения температуры воздуха на этой высоте к температуре воздуха на уровне моря. Плотность на уровне моря — 1,225 кг/см3, давление на уровне моря — 101325 Па, температура на уровне моря — 288,15 К.

Массовое содержание топлива в ТВС определяется длительностью впрыска форсункой, которая зависит от количества поступившего воздуха в двигатель, оборотов и режима работы (мощностной, экономичный или холостой ход). Блок управления выбирает режим на основании угла открытия дросселя и оборотов.

Информацию об угле открытия дроссельной заслонки для блока управления дает датчик положения дроссельной заслонки. Самое распространенное исполнение в инжекторных системах — резистор переменного сопротивления, в редких случаях несколько концевых выключателей, говорящих о переходе в рабочий режим и последующем переходе в мощностной режим.

Суммарное время впрыска на одновременном и попарно-параллельном способе одинаково, на фазированном — в два раза выше, т.к за 1 цикл одновременного и попарно-параллельного впрыска форсунка включается 2 раза, а на фазированном — 1, поэтому время ее работы увеличено примерно в 2 раза.

Массовый расход воздуха блок управления может вычислить по расходомеру воздуха и температуре воздуха, или по совокупности показателей: угол открытия дросселя, обороты, абсолютное давление и температура воздуха.

Датчик кислорода участвует в обратной связи и предназначен для определения содержания кислорода в отработавших газах.

Датчик температуры охлаждающей жидкости (ДТОЖ) служит для определения коррекции топливоподачи и зажигания по температуре двигателя (на холодную используется более богатая смесь).

Блок управления определяет режим холостого хода при выполнении следующих условий (возможно одного из них):

— Положение дросселя менее установленного значения,

— Сработал концевой выключатель признака холостого хода,

— Обороты двигателя менее определенного значения.

Нераспознание ЭБУ признака ХХ приводит к неправильным оборотам на холостом ходу.

Грубая регулировка оборотов на ХХ осуществляется регулятором добавочного воздуха (добавочный воздух в обход дроссельной заслонки или приоткрывание дроссельной заслонки), а точная – с помощью изменения УОЗ (может быть не во всех системах). Регулятор управления УОЗ включается, если рассогласование оборотов превысило зону нечувствительности регулятора УОЗ.

Инжекторные системы отличаются малым расходом толпива и стабильностью работы, помогают получить большую отдачу от двигателя.

Кому интересно, подписывайтесь.

Источник

Adblock
detector