Датчики температуры подшипников двигателя

Контроль температуры датчиками PT100

Описание

Пусковая защита, контроль температуры подшипников качения

В отличие от износостойких подшипников скольжения из карбида кремния (SiC), установленных внутри насоса, подшипники качения во внешнем подшипниковом узле подвергаются естественному износу. В случае повреждения подшипников качения начинается эксцентричное вращение внешней полумуфты.

Для предотвращения повреждения внешних магнитов о защитную оболочку магнитной муфты в подобных ситуациях все насосы DICKOWс магнитной муфтой оснащены механической пусковой защитой. Зазоры S1 между вращающимся пусковым кольцом и неподвижной опорой подшипника с одной стороны и S2 между вращающейся магнитной муфтой и неподвижной защитной оболочкой магнитной муфты с другой стороны подобраны таким образом, чтобы механически избежать касания магнитов с защитной оболочкой при перегреве.

Продолжительная работа с повреждённым подшипником качения приводит к соответствующему износу на пусковом кольце, что уменьшает зазор между внешними магнитами и защитной оболочкой. Если обслуживающий персонал своевременно не распознает эту ситуацию, то из-за повреждения защитной оболочки внешними магнитами перекачиваемая среда может попасть в атмосферу.

У датчиков температуры PT100 измерительный резистор выполнен из платины, который при T = 0 °C имеет сопротивление 100 Ом. Изменение температуры в месте измерения приводит к изменению сопротивления и, следовательно, напряжения на выходе. Изменение напряжения обрабатывается в последовательно включенном регуляторе таким образом, что при превышении заданной предельной температуры поступает сигнал на отключение электродвигателя или срабатывает сигнализация.

При повреждении подшипника качения пусковое кольцо вращается эксцентрично. Если на насосе применяется датчик PT100 для контроля температуры, как показано на рисунке A, то соприкосновение деталей приводит к увеличению температуры на датчике PT100, который затем подаёт сигнал на остановку электродвигателя.

Датчики PT100 для насосов NCL / NCR(спецификация 84.SE.031)

Датчик PT100 накладного типа (спецификация 84.SE.028)

Контроль температуры поверхности защитной оболочки магнитной муфты

При выборе элементов PT100 необходимо убедиться, что они действительно подходят для измерения температуры поверхности.

На рисунке Bпоказан традиционный температурный датчик PT100, который в максимальной степени соответствует требованиям к такого рода датчикам. Корпус защитной трубки выполнен плоским, так что имеется достаточный контакт с поверхностью защитной оболочки магнитной муфты. Чувствительный элемент закреплен непосредственно на корпусе защитной трубки. Встроенная пружина гарантирует, что нижний край защитной трубки будет постоянно соприкасаться с поверхностью защитной оболочки.

Такие датчики надежно работают в насосе, заполненном средой, и защищают от превышения точки кипения перекачиваемой среды в камере магнитной муфты, вызванного недопустимым повышением температуры, в т.ч. при перекачивании кипящих сред. Или для контроля температуры обратного потока внутренней циркуляции при отводе тепла от потерь на магните, как показано на рисунке C, что возможно только в насосах DICKOW с лопатками на тыльной стороне защитной оболочки магнитной муфты или вспомогательным колесом.

Недопустимое повышение температуры магнитной муфты может быть вызвано падением расхода насоса ниже допустимого, работой против закрытого клапана на нагнетании без дополнительного байпаса, засорением циркуляционных каналов, а также при размагничивании магнитной муфты и нарушением внутреннего потока циркуляции.

Важно знать!
— PT100 защищает магнитную муфту от перегрева только в том случае, если насос полностью заполнен перекачиваемой средой.
— При установке PT100 на входе внутреннего циркуляционного потока к магнитной муфте, как показано на рис. D (защитная оболочка без лопастей на тыльной стороне),то в кипящих средах функция защиты от превышения точки кипения больше не гарантируется.PT100 не будет реагировать до тех пор, пока весь насос не нагреется соответствующим образом.
— Датчики температуры поверхности, как показано на рис. B, не предназначены для защиты от сухого хода.

Читайте также:  Неисправности двигателя хундай солярис

Контроль температуры подшипников скольжения у насосов с обогревом

Принцип действия и конструкция датчика PT100 идентичен ранее описанному датчику для контроля температуры защитной оболочки магнитной муфты

У описанных выше датчиков температуры основное предназначение — контроль точки кипения перекачиваемой жидкости в камере магнитной муфты. Эта проблема, как правило, отсутствует в перекачиваемых средах, требующих дополнительного обогрева насоса.

Повреждения насоса могут возникнут в том случае, если насос запускают в тот момент, когда перекачиваемая жидкость недостаточно разогрета. В связи с этим рекомендуется контролировать температуру внутри насоса, т.е. в области рабочего колеса на стороне подшипника скольжения. Датчик PT100 настраивается таким образом, что насос может быть запущен только в том случае, когда температура в точке измерения выше минимально допустимой температуры перекачиваемой среды.

Важно знать!
— Если контроль температуры насоса не предусмотрен, то необходимо выполнить следующие действия: на время прогрева насоса электродвигатель обесточить, снять защиту муфты и продолжать нагрев насоса до тех пор, пока вал насоса не будет легко прокручиваться вручную.

Источник

Датчики температуры для электродвигателей и подшипников

А еще для измерения температуры обмоток и корпусов трансформаторов, температуры в бане и даже температуры “затора” в самогоноварении… Все применения их трудно перечислить. Речь о компактных датчиках с кабельным выводом — термосопротивлениях и термопарах ОВЕН ДТС и ДТПХ моделей 014 и 034.

Они малы и бюджетны. В отличие от бескорпусных термопар , чувствительный элемент этих датчиков защищен гильзочкой диаметром 5 мм из латуни или нержавейки (ДТС214). То есть можно не бояться наведения помех через металлические части оборудования, с которыми соприкасается термодатчик. Степень пылевлагозащиты — уже не IP00, а IP54. Это означает, что датчики практически не боятся брызг и пыли.

Также это датчики отличаются быстрой реакцией на изменения температуры — малой тепловой инерцией .

ДТС014 и ДТС034 — термосопротивления с медными чувствительными элементами (ЧЭ) — 50М и 100М — могут измерять температуру до 150 °С, а с платиновыми ЧЭ — РТ100, РТ1000 или 100П — до 250 °С. Кабельный вывод всегда имеет экран — дополнительная защита датчика от помех.

Термопары ДТПК (ТХА) и ДТПL (ТХК) 014 и 034 работают до 300 °С. Кабельный вывод выполнен из термопарного кабеля, для термопар это обязательное условие!

ДТХ034 — отличается от 014 лишь тем, что имеет накидную гайку М8х1. Это позволяет ввинчивать датчик в корпуса подшипников

В марте 2020 года мы модернизировали конструкцию этих моделей. Ранее они выпускались с латунными монтажными частями длиной 20 мм, но периодически были проблемы при производстве моделей с конструктивно большим чувствительным элементом, в частности 100М. Он с трудом помещался внутри “гильзочки”. Теперь мы изготавливаем такие датчики только с длиной монтажной части 25 мм. Это гарантирует 100% отличное качество всех датчиков.

При заказе датчика нужно обязательно учитывать расстояние между точкой измерения и вторичным прибором, куда датчик будет подключаться. В зависимости от Вашей потребности, мы можем изготовить датчик с длиной кабельного вывода от 20 см до 20 метров.

Их цена начинается от 420 руб., и зависит только от длины кабельного вывода. Короче кабель — дешевле датчик!

И, конечно же, эти термосопротивления и термопары обязательно поверяются на нашем заводе при изготовлении. Погрешность ДТС — не более 1,55 °С ( для класса В по ГОСТ 6651-2009 ), а термопар — не более 2,5 °С ( 2 класс по ГОСТ Р 8.585-2001 )

Датчики с кабельным выводом у нас на сайте с ценами:

Читайте также:  Какой зазор поршневых колец на 402 двигателе

✔Подпишись на наш канал, если любишь автоматизацию!👍

Источник

Измерение температуры подшипников

Одним из действенных методов диагностики текущего состояния подшипников и предупреждения неисправностей, наряду с вибродиагностикой, является мониторинг температуры. Проведем краткий анализ методов и инструментов для измерения температуры подшипников и их преимуществ и ограничений.

Тепло правильное и неправильное

Любой подшипник в процессе работы генерирует тепло, которое отводится и рассеивается с помощью теплопередачи через смазку и контактирующие узлы и конструктивные элементы (вал и корпус подшипника). Также тепло частично отводится излучением и конвекцией с потоками воздуха.

Если тепла вырабатывается больше, чем может отводиться от подшипника, он начинает нагреваться сильнее обычного, что приводит к серьезным проблемам, начиная от ускоренной деградации смазок и уплотнений и заканчивая температурной деформацией колец и элементов качения, что может привести к заклиниванию и разрушению подшипника.

Избыточное тепло может генерироваться в подшипнике по ряду причин:

  • при нерасчетных нагрузках;
  • при недостатке смазки;
  • при чрезмерном износе;
  • при загрязнении элементов и поверхностей качения.

Производители для своих подшипников устанавливают оптимальные скорости вращения, при которых температура не превышает +70°C, что считается стандартом рабочей температуры для стальныхподшипников. Кроме того, устанавливаются предельные температуры в зависимости от материала уплотнений, сепаратора и используемых смазок:

  • при наличии манжетного уплотнения подшипника из нитрила ограничение составляет 100°C;
  • при наличии манжетного уплотнения из витона — 200°C;
  • при использовании полиамидного сепаратора — предел температуры 120°C;
  • при использовании смазок с противозадирными присадками предел составляет 80°C;
  • при использовании стандартных пластичных смазок на основе литиевого мыла ограничение до 120°C;
  • при использовании «высокотемпературных» смазок ограничение до 150°C.

Превышение установленных ограничений в течение долгого времени приводит к резкому снижению ресурса подшипника и преждевременному выходу из строя. Так что мониторинг рабочей температуры подшипника позволяет вовремя обнаружить серьезные проблемы, принять меры по их устранению и многократно продлить срок службы самого подшипника и всего узла.

Методы и инструменты

Существует несколько решений для инструментального контроля температуры подшипников. Ни одно из них нельзя назвать универсальным. Всегда приходится делать выбор в зависимости от конструкции и условий работы подшипника, а также всего узла или механизма, в которых подшипник задействован.

1. Контактное измерение температуры

Исторически наиболее ранним методом измерения температуры любых узлов и механизмов является контактный способ – при непосредственном контакте термометра с поверхностью соответствующего механизма. Если речь идет о подшипнике, то такое измерение чаще всего возможно только на неподвижном кольце, корпусе подшипникового узла или лишь после остановки всего агрегата.

Наиболее точное измерение (до 0.1 °C) в широком диапазоне температур обеспечивают электронные термометры сопротивления и термометры на термопарах (термоэлектрических преобразователях).

Для использования удобнее всего термометры, где измеряющая головка (терморезистор или термопара) вынесена на отдельный щуп, которым можно достать непосредственно до подшипника внутри редукторов, коробок передач и прочих узлов без их полной разборки.

При огромном выборе таких приборов внимания заслуживают модели, разработанные авторитетными производителями подшипников. Так, в каталоге SKF есть контактный термометр TKDT 10 – компактный, высококачественный и точный инструмент. Он имеет широкий диапазон измерения температур: от -200 до +1372°C и предназначен специально для работы с подшипниками, редукторами, электродвигателями, направляющими и другими компонентами промышленного оборудования. К данному термометру можно подключить одновременно две термопары, при этом он может показывать температуру любой из них, разницу температур между ними, а также минимальную, максимальную или среднюю температуру.

2. Дистанционное измерение температуры

Инфракрасные (IR) термометры, пирометры и тепловизоры сейчас очень широко используются для дистанционного (бесконтактного) измерения температурных режимов широкого круга узлов, механизмов, электрических машин (электродвигателей, генераторов, насосов и компрессоров).

Читайте также:  Какой двигатель самый хороший на бмв е39

Дистанционный характер измерения позволяет быстро узнавать температуру движущихся узлов (конвейеров, роликов, валов) без их остановки, что имеет огромную ценность для эксплуатационных служб в любой отрасли.

Не удивительно, что такой удобный инструмент применяется и для измерения рабочей температуры подшипников и подшипниковых узлов. Впрочем, непосредственное измерение температуры возможно в ограниченном числе случаев, когда внутреннее или наружное кольцо подшипника открыто для обзора и не загорожено слоем смазки, крышкой, кожухом или уплотнением.

Если подшипник работает в масляной ванне и скрыт за другими узлами и компонентами, то доступно лишь косвенное измерение по температуре всего узла (например, редуктора или насоса).

При выборе IR-термометра важны следующие параметры:

  • размер пятна измерения;
  • скорость измерения;
  • диапазон измеряемых температур и точность измерения;
  • возможности для сохранения результатов измерений (во внутренней памяти или на внешних картах памяти).

Выбор конкретных инструментов для дистанционного мониторинга температуры не представляет никакого труда, так как на рынке присутствуют модели в широком диапазоне цен и функциональных возможностей. Известнейшие производители подшипников выпускают свои линейки дистанционных инфракрасных термометров. В частности, их несложно найти в каталогах Timken, NTN-SNR и SKF.

Так, NTN-SNR предлагает лазерный инфракрасный термометр LaserTEMP 301, который предназначен для проведения диагностики работы подшипниковых узлов и механизмов. Оптическая система термометра позволяет точно измерять рабочую температуру далеко расположенных малогабаритных объектов. Прибор позволяет проводить измерения в диапазоне от -50°C до +850°C, а время измерения одного составляет менее 1 секунды. В памяти устройства могут сохраняться 20 последних измерений.

Нужно отметить, что дистанционные термометры от NTN-SNR и SKF имеют очень удобную функцию подключения термопар, то есть позволяют измерять температуру контактным способом в тех случаях, когда измеряемая поверхность не находится в пределах прямой видимости.

3. Решения для мониторинга

Выше рассматривались методы ручного измерения температуры подшипников с помощью контактных или дистанционных термометров, что требует непосредственного участия человека, а зачастую и частичной разборки узлов и механизмов. Но в ответственных приложениях, например, металлообрабатывающих станках и обрабатывающих центрах, часто возникает потребность в постоянном мониторинге изменения температуры подшипников без остановки оборудования и без его разборки.

С развитием микроэлектроники многие известнейшие производители подшипников и узлов для промышленного оборудования начали разрабатывать свои решения для автоматической регистрации и анализа температур.

Например, германский концерн Schaeffler выпускает компактное решение FAG GreaseCheck, который помимо наличия смазки контролирует также температуру подшипников и узлов.

Корпорация Regal Beloit также внедряет систему беспроводного мониторинга вибрации и температуры Perceptive Technologies, которая может быть установлена на любом электрооборудовании.

Концерн NTN-SNR в 2019 году представил подшипниковый узел NTN-SNR для металлообрабатывающих станков с интегрированным сенсорным блоком. Данное решение состоит из двух высокоскоростных подшипников серии HSE и двух распорных втулок, которые расположены между подшипниками. В наружной распорной втулке установлены три типа датчиков, которые измеряют вибрации, тепловой поток и температуру подшипников с очень высокой точностью. Таким образом, критическое состояние подшипников может быть обнаружено на ранних стадиях, что позволит избежать повреждений как самого подшипника, так и шпинделя и других узлов дорогостоящих станков.

Компания «Подшипник.ру» ведущий поставщик промышленных подшипников в России, поставляет отечественным промышленникам не только высококачественные подшипники, но инструменты для их монтажа и демонтажа, а также решения для ручного и автоматизированного мониторинга рабочих температур подшипников в составе любого промышленного оборудования.

Техническая служба «Подшипник.ру» также оказывает консультации по подбору измерительного оборудования, внедрению автоматических систем мониторинга температуры и проводит все виды диагностики подшипников, включая вибродиагностику, мониторинг температур и видеодиагностику рабочих поверхностей подшипников на предмет их износа и повреждений.

Источник

Adblock
detector