Датчики измерения оборотов двигателя

Тахометр цифровой

Электронный цифровой тахометр с датчиком Холла

В себя включает:

  • Цифровой дисплей — LED.
  • Датчик Холла.
  • Магнит (диаметр — 6 мм., толщина — 3 мм., вес — 0,1 гр.).

Цифровой тахометр используется для измерения скорости вращения, определения числа оборотов любых вращающихся устройств. Прибор обладает высокой надежностью и высокими показателями безопасности.
Тахометр определяет точную скорость вращения объекта через датчик Холла и магнит который крепится на вращающийся предмет. Магнит можно прикрепить на вращающуюся поверхность обтянув термоусадкой, изолентой, а так же приклеив на клей для металла или силикон. Инструмент показывает скорость вращения от 0 до 99999 оборотов в минуту. LED — дисплей позволит делать и считывать измерения в условиях недостаточной освещенности.

Блок питания в комплект не входит.

Схема подключения

  • Подсоединить датчик и провод питания к блоку тахометра.
  • Подключить питание согласно полярности указанной на плате или схеме ниже.
  • Установить магнит на вращающийся предмет северной стороной к датчику (если цифры на экране не реагируют на магнит, нужно его повернуть другим полюсом к датчику).
  • Установить датчик Холла на расстоянии 3-8 мм от магнита.

Источник

Датчики частоты вращения

В качестве датчиков частоты вращения в системах автоматики применяют тахогенераторы — маломощные электрические машины постоянного и переменного тока. Для преобразования частоты вращения электродвигателей в напряжение применяют тахометрические мосты.

Тахогенераторы постоянного тока

Тахогенераторы постоянного тока в зависимости от способа возбуждения выполняют двух типов: магнитоэлектрические (возбуждаемые от постоянных магнитов) и электромагнитные (возбуждаемые от специальной обмотки) (рис. 1 а, б).

Напряжение на выходе тахогенератора при постоянном потоке возбуждения U вых = Е — IR я = Се ω — IR я

где Се = ( U я — I я R я)/ ω — постоянная машины, определяется из паспортных данных.

На холостом ходу ( I =0) напряжение U вых = Е = Се ω . Следовательно, статическая характеристика тахогенератора U вых = f ( ω) при холостом ходе линейна, так как Се = const (прямая I, рис. 1, в).

Рис. 1. Датчики частоты вращения (тахометрические генераторы постоянного тока): а) с возбуждением от постоянных магнитов, б) с электромагнитным возбуждением, в) статическая характеристика

При нагрузке статическая характеристика становится нелинейной (кривая 2). изменяется ее наклон, что является следствием реакции якоря и падения напряжения в обмотке якоря тахогенератора. В реальных тахогенераторах возникает падение напряжения на щетках, что приводит к появлению юны нечувствительности (кривая 3).

Для уменьшения искажения статических характеристик тахогенераторов используют при небольших нагрузках ( I н = 0,01 — 0,02 А). Ток в цепи якоря I я = Е/( R я + R н), а выходное напряжение U вых = Е — IR я = Се ω — IR я.

Тахогенераторы постоянного тока широко применяются в автоматических системах регулирования электроприводов в качестве датчиков частоты вращения. Их достоинства — малая инерционности высокая точность, малые габариты и масса, а для магнитоэлектрических тахогенераторов еще и отсутствие источника питания. Недостаток — наличие коллектора со щетками.

Тахогенераторы переменного тока

Синхронные тахогенераторы — однофазная синхронная машина с ротором в виде постоянного магнита (рис. 2, а), У синхронных тахогенераторов с изменением угловой скорости вместе с амплитудой изменяется и частота выходного напряжения. Статические характеристики нелинейны. В динамической отношении синхронные тахогенераторы являются безинерционными элементами.

Асинхронный тахогенератор — это двухфазная асинхронная машина с полый немагнитным ротором (рис. 2, б). На статоре асинхронного тахогенератора размещаются две сдвинутые на 90 обмотки (возбуждения ОВ и генератора ОГ). Обмотка ОВ подключается к источнику переменного тока.

Рис. 2. Тахомерические генераторы переменного тока: а — синхронный, б — асинхронный

В обмотке OГ, являющейся выходной, при вращении ротора наводятся э.д.с. трансформации и вращения. Под действием э.д.с. вращения на выходе тахогенератора возникает напряжение U вых.

Статическая характеристика асинхронного тахогенератора также нелинейна. При изменении вращения ротора фаза выходного напряжения изменяется на 180°.

Асинхронные тахогенераторы используют как датчики угловой скорости, частоты вращения и ускорений. В последнем случае обмотка возбуждения асинхронного тахогенератора подключается к источнику постоянного тока.

Достоинства асинхронных тахогенераторов — надежность, малая инерционность. Недостатки — наличие на выходе остаточной э.д.с. при неподвижном роторе, относительно большие габариты.

Тахометрические мосты постоянного и переменного тока применяют в системах автоматики для создания обратной связи но частоте вращения электрических двигателей. Это позволяет упростить систему, так как отпадает необходимость в дополнительной электрической машине — тахогенераторе. При этом уменьшаются статические и динамические нагрузки на исполнительный двигатель.

Тахометрический мост постоянного тока представляет собой специальную мостовую схему (рис. 3, а), в одно из плеч которой включен якорь двигателя R я, а в другие — резисторы R1 , R2 , R п. К диагонали а b моста подводится напряжение сети U, питающее якорь двигателя, а с диагонали cd снимается напряжение U вых пропорциональное угловой скорости ω.

Читайте также:  Чем грозит плохая компрессия двигателя

Рис. 3. Тахометрический мост постоянного тока (а) и бесконтактное измерительное устройство частоты вращения асинхронного двигателя (б)

Если ток в выходной цепи отсутствует, то

Решая совместную систему уравнений, получим

Напряжение на выходе тахометрического моста

где Kтм — коэффициент передачи тахометрического моста.

Погрешность тахометрического моста составляет ±(2 — 5)%. В динамическом отношении тахометрические мосты постоянного тока являются безинерционным звеном.

Для контроля частоты вращения ротора асинхронного электродвигателя применяют бесконтактное измерительное устройство (рис. 3, б), содержащее измерительный трансформатор тока ТА и напряжения TV.

Источник

Датчик оборотов двигателя авто

Когда у автолюбителей возникают те или иные проблемы с двигателем, они начинают интересоваться, какой датчик отвечает за обороты двигателя, поскольку первое подозрение зачастую падает на данные устройства.

Однако это не всегда так, ведь обороты могут «плавать» по различным причинам. Лучше всего для начала убедиться в том, что какие-либо другие поломки отсутствуют, а измерители проверять после. Так или иначе, если вы хотите обнаружить нужный датчик, вам необходимо знать, как он выглядит, и где его искать.

Основные понятия

Чтобы синхронизировать работу систем зажигания, а также впрыска, предусматривается датчик оборотов, или, как его называют, измеритель частоты вращения. Именно он передаёт в электроблок, управляющий мотором, необходимые данные о том, какие вращения поддерживает коленчатый вал в данный момент.

Этот измеритель силового агрегата – важнейший элемент автомобиля, без которого не обходится взаимодействие многих систем, ведь он помогает обеспечивать корректное функционирование всей машины в целом.

Электронный управляющий блок авто обрабатывает особые сигналы, которые посылает этот измеритель, чтобы выяснить:

  • количество впрыскиваемого топлива в данный момент;
  • момент впрыска;
  • время, требуемое для активации клапана адсорбера;
  • момент зажигания (у бензиновых моторов);
  • угол поворачивания распределительного вала во время работы системы по изменению фаз механизма газораспределения.

Чтобы определить работоспособность измерителя, необходимо узнать его местонахождение.

Место расположения

Датчик частоты вращения, или индукционный измеритель, обычно располагается над маркерным диском автомобиля.

Диск, в свою очередь, может находиться:

  • на маховике;
  • на коленвале внутри блока цилиндров – такое бывает у марок Ford, Opel и т.д.;
  • спереди моторного отсека на коленвале, вместе со шкивом привода допагрегатов (Jaguar, BMW, ВАЗ и т.д.).

Лучше всего, когда маркерные зубцы маховика предназначаются лишь для измерения оборотов мотора. Чуть хуже, если маркерными являются стартерные зубцы: эта особенность присутствует у автомашин марок Audi и Volvo.

Небольшая кривизна зубца маховика или маленький скол, присутствующий на нём, часто могут стать причиной в нарушении работы системы зажигания, из-за чего силовой агрегат не может функционировать на повышенных частотах вращения. В этом случае зачастую происходит хаотичное искрообразование, так как блок управления неправильно определяет количество зубцов.

Важные особенности

Следует обратить внимание, что на некоторых автомобилях датчик частоты вращения заменяет измеритель Холла: данное приспособление может передавать в главный блок управления не только сигнал о фазах механизма газораспределения, но и обороты двигателя. Если у вас именно такая ситуация, то найти прибор можно вблизи распределительного вала.

В случае, когда измеритель частоты вращения коленчатого вала выйдет из строя, вы не сможете завести свой автомобиль: после доскональной проверки системы зажигания и подачи топлива, в ходе которой не будет обнаружено существенных отклонений, рекомендуется обязательно проверить работоспособность датчика оборотов.

Заключение

«Плавающие» вращения двигателя не так редки: это состояние может возникнуть вследствие нескольких причин, поэтому необходимо тщательно проверить все варианты.

Если в работоспособности всех важнейших систем автомашины у вас сомнений не возникнет, рекомендуется задаться вопросом, какой из датчиков отвечает за обороты двигателя. Чтобы обнаружить причину быстро и более точно, рекомендуется своевременно провести диагностику авто, но не стоит забывать, что в некоторых случаях можно обойтись и без неё.

Полезное видео:

Источник

Автомобильный справочник

для настоящих любителей техники

Датчики скорости и частоты вращения

Датчики скорости и частоты вращения измеряют количество оборотов или расстояние, пройден­ное за определенное время. Применительно к автомобилестроению в обоих случаях — это измеряемые переменные, возникающие между двумя компонентами или относительно поверх­ности дороги либо другого автомобиля. Однако иногда необходимо измерить абсолютную ско­рость вращения в пространстве, т.е. вокруг осей автомобиля (скорость вращения вокруг верти­кальной оси). Например, для системы динами­ческой стабилизации (ESP) скорость вращения автомобиля вокруг вертикальной оси должна вычисляться путем «считывания». Вот о том, какими бываю датчики скорости и частоты вращения, мы и поговорим в этой статье.

В инкрементном определении относитель­ной скорости вращения вокруг вертикальной оси, в зависимости от количества и размера сканируемых периферийных меток ротора, различают следующие типы датчиков (рис. «Регистрация относительной частоты вращения» ):

  • Простой датчик оборотов, только с одной сканируемой меткой на оборот, что позво­ляет определить только среднюю скорость вращения;
  • Сегментный датчик, лишь с небольшим количеством сканируемых периферийных сегментов (например, эквивалентных ко­личеству цилиндров двигателя);
  • Инкрементный датчик с близко располо­женными периферийными метками.
Читайте также:  Какое масло заливать в двигатель brp

Что измеряют датчики скорости и частоты вращения

До определенного момента эта форма дат­чика позволяет измерять мгновенную скорость в точках на окружности и, соот­ветственно, регистрировать очень мелкие угловые доли.

Примерами относительной частоты враще­ния являются частота вращения коленчатого или распределительного вала двигателя, частота вращения кулачкового вала топлив­ного насоса высокого давления дизеля, ча­стота вращения колес автомобиля (ABS, TCS, ESP). Измерения в основном выполняются с помощью системы инкрементных датчиков, состоящей из шестерни и датчика частоты вращения.

Формы датчиков скорости

Используются различные формы датчиков (рис. «Различные формы датчиков» ): стержневые, вильчатые и кольцевые (внутренние и внешние). Благодаря простоте монтажа, самым распространенной формой датчика является стержневая. Стержневой датчик размещается рядом с ротором, зубья которого приближаются к нему и проходят в непосредственной близости. Однако датчики такой формы имеют самую низкую чувстви­тельность измерений. В некоторых случаях допускается использование вильчатых датчи­ков, нечувствительных к осевому и радиаль­ному люфту. В установленном состоянии этот датчик должен быть примерно совмещен с ротором. Тип датчика, в котором датчик окру­жает вал ротора в форме кольца, уже практи­чески не используется.

Требования к новым датчикам скорости

Во многих отношениях более ранние тра­диционные датчики индуктивного типа по­казывают очень неудовлетворительные ре­зультаты. Они выдают амплитуду, зависимую от частоты вращения, и поэтому непригодны для низких оборотов, допускают лишь от­носительно небольшие допуски воздушного зазора, и большей частью неспособны отли­чить колебания зазора от импульсов частоты вращения. По крайней мере, конец датчика- из-за своей близости к тормозу (в случае с датчиками скорости вращения колес), дол­жен быть стойким к высоким температурам. Эти недостатки находятся позади дополни­тельных функций, на которые нацелено но­вое поколение датчиков:

  • Статическое определение (т.е. при нуле­вой скорости: сверхмалые обороты колен­чатого вала или частота вращения колес);
  • Эффективное измерение в больших зазорах (не совмещенный монтаж с зазорами> 0);
  • Небольшой размер;
  • Эффективная работа независимо от колебаний зазора;
  • Термостойкость до 200 °С;
  • Определение направления (опция для системы навигации);
  • Определение опорной метки (зажигание).

Магнитостатические датчики (датчики Холла, магниторезисторы, AMR) очень хорошо отвечают первым двум требованиям. И, как правило, они также обеспечивают соответствие второму и третьему требованиям.

На рис. «Схема расположения датчиков, нечувствительных к колебаниям воздушного зазора» показаны три, в принципе, прием­лемые формы датчиков, обычно нечувстви­тельные к колебаниям зазора. Здесь следует различать датчики с радиальным и танген­циальным считыванием. Это означает, что, независимо от зазора, магнитостатические датчики всегда смогут отличить северный и южный полюса магнитноактивного полюс­ного колеса или роторного кольца. В случае с магнитнопассивными роторами знак выход­ного сигнала уже не будет зависеть от зазора при регистрации напряженности тангенци­ального поля (хотя тот факт, что зазор часто увеличивается из-за ротора, является здесь недостатком). Однако часто используются также радиально измеряющие градиентные датчики, которые по сути лишь регистрируют градиент радиального поля, изменяющий свой знак не при изменении зазора, а только при изменении угла поворота.

Роторы

Ротор имеет ключевое значение для измере­ния скорости вращения; однако он обычно поставляется автопроизводителем, в то время как сам датчик приходит от постав­щика. До недавних пор почти исключительно использовались магнитнопассивные роторы, состоящие из магнитомягкого материала, обычно железа. Они дешевле магнитотвер­дых полюсных колес и проще в обращении, поскольку не намагничиваются, и нет опас­ности взаимного намагничивания (например, во время хранения). Как правило, при оди­наковых инкрементной ширине и выходном сигнале, внутренний магнетизм полюсного колеса (полюсное колесо определяется как магнитноактивный ротор) допускает значи­тельно больший зазор.

Современные датчики скорости

Гоадиентные датчики

Содержат постоянный магнит, полюс ко­торого обращен к зубчатому колесу. Его поверхность гомогенезирована тонкой ферромагнитной пластиной, на которой расположены два гальваномагнитных эле­мента на расстоянии примерно половины зубчатого интервала. Таким образом, один из элементов всегда находится напротив межзубного промежутка, а другой — напротив зуба. Измеряется различие в напряженности поля в двух смежных местоположениях на окружности. Выходной сигнал приблизи­тельно пропорционален отклонению силы поля как функции угла на окружности, поэ­тому полярность не зависит от зазора.

Тангенциальные датчики

Тангенциальные датчики отличаются от их аналогов градиентного типа способом по­лучения вариаций в полярности и напря­женности магнитного поля, в компонентах, расположенных касательно к окружности ро­тора. Варианты конструкции включают тон­копленочную технологию AMR (вытянутые резисторы с поперечными полосками) или резисторы из одного сплава, по полу- или полной мостовой схеме. В отличие от гради­ентных датчиков, их не требуется адаптиро­вать к конкретному шагу зубьев ротора, и они могут выполнять считывание в данной точке. Требуется локальное усиление, хотя их изме­рительный эффект на 1-2 порядка выше, чем у кремниевых датчиков Холла (рис. «Датчик оборотов AMR в виде датчика тангенциального поля» ).

Читайте также:  Какие могут быть неисправности в двигателе автомобиля

При использовании интегрированного в подшипник датчика частоты вращения коленчатого вала, на общей рамке с вы­водами устанавливаются тонкопленочный анизотропный магниторезистивный датчик (AMR-датчик) и монолитная интегральная схема, производящая вычисления. С целью экономии пространства и защиты от влияния температуры, интегральная схема устанавли­вается под углом 90°.

Колебательные гирометры

Позволяют измерять абсолютную частоту вращения при поворотах автомобиля (от­клонения вертикальной оси). В частности, это требуется в системах контроля динамики автомобиля VDC, стабилизации заноса и на­вигации. Принцип действия базируется на свойствах механических гироскопов; при из­мерении используется ускорение Кориолиса, сопутствующее колебательному движению:

Скорость vy изменяется синусоидально, в со­ответствии с колебательным движением:

При постоянной скорости вращения вокруг вертикальной оси Ωz создается синусои­дальное ускорение Кориолиса с такими же частотой, положением и фазовым углом, а значение амплитуды будет следующим:

Это ускорение можно измерить блоком на­блюдения, также движущимся на матери­альной точке т (рис. «Создание ускорения Кореолиса» ). Чтобы определить скорость вращения вокруг вертикальной оси, используется подходящий орган управления для эффективного поддержания амплитуды колебаний на постоянном уровне и выпрям­ления ускорения Кориолиса, измеренного на колеблющейся массе т с выбором фазы и частоты (например, с помощью синхронизи­рующего усилителя). В этом процессе удаля­ется нежелательное ускорение извне, напри­мер, ускорение кузова.

Микромеханические кремниевые датчики скорости вращения автомобиля вокруг вер­тикальной оси обеспечивают недорогую и компактную альтернативу использующимся в настоящее время прецизионным пье­зоэлектрическим датчикам. Объединение технологий позволяет достигать высокой точности, необходимой для динамических систем автомобиля (рис. «Микромеханический датчик скорости вращения вокруг вертикальной оси ММ1 с электродинамическим приводом» ). Две толстые пастированные пластины, изготовленные из платы посредством объемной микромеха­ники колеблются в двухтактном режиме на своей резонансной частоте, которая опреде­ляется их массой и жесткостью сцепляющей пружины (> 2 кГц). Каждая плата снабжена располагаемым на поверхности микромеханическим емкостным датчиком ускорения, который служит для измерения ускорения Кориолиса (поворотного ускорения) Ωz в плоскости кристаллической пластины, расположенной перпендикулярно к направ­лению колебаний, когда кристалл датчика поворачивается вокруг своей вертикаль­ной оси с угловой скоростью. Получаемые сигналы пропорциональны произведению угловой скорости и скорости возвратно­-поступательного движения, которая регули­руется электроникой до установления по­стоянной величины. На колеблющейся плате имеется изготовленный печатным способом простой проводник, на который действуют силы Лоренца в поле постоянного магнита, направленном перпендикулярно поверхно­сти кристалла. Таким образом, проводник используется для измерения частоты ко­лебаний как напрямую, так и индуктивным способом при том же магнитном поле. Раз­личные физические характеристики приво­дных и сенсорных систем предупреждают недопустимые перекрестные помехи. Для того чтобы исключить внешнее ускорение (сигнал общего режима), два противопо­ложных сигнала датчика вычитаются один из другого (суммирование используется для определения внешнего ускорения). Точная микромеханическая структура помогает по­давить эффект большого колебательного ускорения, которое на несколько порядков выше ускорения Кориолиса нижнего уровня (поперечная чувствительность значительно ниже 40 дБ). Приводные и измерительные системы в понятиях механического и элек­трического действий являются строго изо­лированными.

Если кремниевый датчик скорости враще­ния вокруг вертикальной оси изготавливать в полном соответствии с поверхностной микромеханикой (SMM), а магнитный привод и систему управления заменить электроста­тической системой, это изолирование может быть реализовано менее последовательно: установленный по центру роторный генератор, работающий по законам электростатики, слу­жит для получения колебаний с амплитудой, которая постоянно регулируется емкостным измерительным преобразователем (рис. Датчик вращения во круг вертикальной оси SMM ММ2 (поверхностная микромеханика) с элетростатическим приводом» ). В случае, когда Ω≠0, силы Кориолиса ини­циируют одновременное наклонное движение «вне плоскости» с амплитудой, пропорцио­нальной скорости вращения вокруг верти­кальной оси и определяемой емкостным спо­собом — электродами, расположенными под генератором. Для того чтобы это движение не слишком амортизировалось, датчик должен работать в вакууме. Хотя меньший размер кристалла и более простой процесс его изго­товления и уменьшают стоимость такого дат­чика, миниатюризация приводит к ухудшению точности измерения. Это предъявляет более высокие требования к электронике. Влияние внешних ускорений здесь уже устраняется механически. Это второе поколение датчиков скорости вращения вокруг оси обозначается аббревиатурой ММ2 и используется главным образом в системах защиты пассажиров для определения скорости вращения вокруг про­дольной оси (бокового раскачивания).

Дальнейшие разработки в области систем стабилизации автомобилей предъявляют все более высокие требования к качеству и мощ­ности сигнала. Они требуют дополнительных осей измерения с высокой надежностью. Третье поколение датчиков (ММ3) отвечает этим требованиям. В этих датчиках используется новое поколение микромеханических элементов. Они измеряют угловые скорости вращения и ускорения, а измеряемые переменные подвергаются циф­ровой обработке.

Источник

ВСЕ О ДВИГАТЕЛЕ
Adblock
detector