Датчик давления топлива двигатель камминз на газель

Датчик давления топлива двигатель камминз на газель

Запчасти для грузовых автомобилей

Полный модельный ряд: ГАЗ-3307, 53, ГАЗ-3309, ГАЗ-66, 3308, 33081, 33086, ГАЗ-33104

Топливная система двигателя Газель Cummins ISF 2.8

В дизельном двигателе Cummins ISF 2.8 автомобилей Газель Бизнес используется топливная система с общим топливопроводом высокого давления и с электронной системой управления.

Система с топливопроводом высокого давления состоит из 4 основных элементов: шестеренного топливного насоса, насоса высокого давления, общего топливопровода высокого давления и форсунок.

Насос высокого давления подает топливо в общий топливопровод высокого давления вне зависимости от частоты вращения двигателя. Топливо под высоким давлением накапливается в этом топливопроводе, откуда оно постоянно подается в форсунки.

Модуль ECM регулирует подачу топлива и момент впрыска включением форсунок.

Со стороны забора топлива требуется установка водоотделяющего топливного фильтра. Он расположен вне двигателя, и в нем установлен ручной подкачивающий насос.

Рис.6. Схема топливной системы дизеля Cummins ISF 2.8

1 — Подача топлива из бака, 2 — Топливный фильтр, 3 — Сливной патрубок топливного водоотделителя, 4 — Подкачивающий насос, 5 — Подача топлива в топливный насос, 6 — Топливный насос высокого давления, 7 — Подача топлива в общий топливопровод высокого давления, 8 — Общий топливопровод высокого давления, 9 — Подача топлива к форсункам, 10 — Форсунка, 11 — Слив топлива из форсунок, 12 — Редукционный клапан высокого давления, 13 — Сливной патрубок редукционного клапана высокого давления, 14 — Сливной топливопровод, 15 — Слив топлива в бак

Шестеренный топливный насос дизельного двигателя Камминз ISF 2.8 автомобилей Газель Бизнес создает давление около 303 — 1303 кПа, за счет которого топливо проходит очистку в фильтре, установленном на двигателе или вне его, перед попаданием в ТНВД.

В этом насосе давление топлива повышается до уровня 250 — 1600 бар в трех радиальных нагнетательных камерах. Исполнительный клапан электронной системы управления подачей топлива, установленный на входе в эти камеры, регулирует объем поступающего в них топлива.

Для этого он использует сигналы модуля ECM, который поддерживает давление в общем топливопроводе высокого давления на требуемом уровне. Топливо, которое не попадает в нагнетательные камеры, выходит через каскадный перепускной клапан.

Он направляет часть топлива под давлением в каналы системы смазки насоса высокого давления дизеля Камминз ISF 2.8 и затем обеспечивает слив топлива в бак, который накапливает топливо и распределяет его между топливопроводами отдельных форсунок.

В нем установлен датчик, который контролирует давление, создаваемое в нем насосом высокого давления. Сигнал этого датчика используется модулем ECM для регулирования подачи топливного насоса высокого давления.

Кроме того, в общем топливопроводе есть редукционный клапан. Он работает как предохранительный клапан, сбрасывая избыточное давление, если давление в топливной магистрали превысит установленный уровень.

Топливо, слитое из общего топливопровода высокого давления, возвращается в топливный бак по сливному топливопроводу.

Топливный насос высокого давления ТНВД Cummins ISF 2.8

Работы по проверке и демонтажу ТНВД Камминз ISF 2.8 Газель Бизнес :

— Очистите все фитинги перед разборкой. Попадание грязи может вызвать повреждение топливной системы.

— Поверните пусковой включатель в положение ON и включите стартер для проверки работы топливного насоса высокого давления.

— Отсоедините топливопровод, идущий к общему топливопроводу высокого давления, от ТНВД Cummins ISF 2.8.

— Подсоедините чистый шланг к выходному каналу топливного насоса высокого давления.

— Вставьте другой конец этого шланга в пустую емкость.

— Включите стартер на 30 секунд и измерьте подачу топливного насоса.

— Подача топливного насоса должна составлять не менее 45 мл за 30 секунд при 125 об/мин или 53 мл за 30 секунд при 150 об/мин.

Если подача ТНВД Камминз ISF 2.8 во время работы стартера не соответствует минимальной норме, выполните следующее:

— Проверьте отсутствие воздуха в топливе.

— Проверьте отсутствие засорений во входном топливопроводе.

— Если результаты этих проверок соответствуют норме, проверьте сопротивление исполнительного клапана электронной системы управления подачей топлива.

— После замены исполнительного клапана электронной системы управления подачей топлива повторно измерьте подачу топливного насоса.

— Если минимальная подача топлива не соответствует норме, замените насос.

— Подсоедините электрический разъем исполнительного клапана ТНВД Газель Каменс и удалите все коды неисправностей с помощью диагностического комплекта.

— Если двигатель не запускается, измерьте расход топлива через сливной топливопровод — это поможет выявить неисправность топливного насоса высокого давления.

— Неисправность перепускного клапана сливной магистрали или топливного насоса может вызвать высокий расход топлива через сливной топливопровод.

— Обязательно измеряйте расход топлива через сливной топливопровод во время работы дизельного двигателя Каменс 2.8 на холостом ходу.

— Проверка утечки из топливной системы, предусмотренная в диагностическом комплекте, может использоваться для увеличения в ней давления, что позволяет выявить большую утечку.

— Снимите быстроразъемный фитинг слива топлива с насоса высокого давления.

— Для снижения опасности утечки топлива из комбинированной магистрали слива из общего топливопровода высокого давления и форсунок необходимо закрыть гибкий сливной топливопровод заглушкой для топливопроводов.

— Оденьте сливной шланг с быстроразъемным фитингом на сливной патрубок ТНВД. Поместите конец шланга слива топлива в мерный цилиндр.

— Запустите дизельный двигатель Cummins ISF 2.8 автомобилей Газель Бизнес и выведите его на холостые обороты.

— Когда топливо начнет поступать в мерный цилиндр, измерьте расход за 30 секунд.

— Максимальный расход в течение 30 секунд при номинальных оборотах холостого хода (800 об/мин) — 310.

— Если ТНВД высокого давления не отвечает нормам по подаче топлива, проверьте наличие воздуха в топливе и сопротивление на входе топлива.

— Если результаты этих проверок соответствуют норме, топливный насос необходимо заменить.

— Очистите все фитинги перед разборкой. Попадание грязи может вызвать повреждение топливной системы.

— Отключите аккумуляторные батареи. Отсоедините и снимите подающие и сливные топливопроводы.

— Отсоедините подающий топливопровод (1), идущий к общему топливопроводу высокого давления от топливного насоса высокого давления, и ослабьте крепление опорных кронштейнов (2).

— Отсоедините разъем жгута проводов исполнительного клапана (3) электронной системы управления подачей топлива.

— Снимите три фланцевые болта крепления ТНВД.

— Демонтируйте топливный насос с картера распределительных шестерен.

Разборка и сборка ТНВД дизеля Каменс 2.8

— С помощью приспособления для замены шестерни удерживайте шестерню привода топливного насоса на месте.

— Ослабьте затяжку гайки крепления шестерни привода ТНВД дизельного двигателя Cummins ISF 2.8, повернув ее против часовой стрелки. Не снимайте ее с вала.

— Установите приспособление для снятия подшипников между фланцем крепления насоса и шестерней привода.

— Зафиксируйте приспособление для снятия подшипников.

— Установите съемник на приспособление для снятия подшипников и вал привода насоса.

— Вращайте винт съемника до тех пор, пока шестерня не отделится от вала привода.

— Снимите гайку крепления шестерни привода топливного насоса, стопорную шайбу и саму шестерню с вала привода топливного насоса.

— Проверьте вал и шестерню привода на отсутствие повреждений. Замените поврежденные детали.

— Проверьте уплотнительное кольцо на отсутствие повреждений. Замените уплотнительное кольцо при обнаружении повреждений.

— Проверьте место установки уплотнительного кольца на отсутствие повреждений. Очистите и восстановите все поврежденные поверхности.

— Проверьте картер распределительных шестерен, отверстие под ТНВД дизеля Камминз ISF 2.8 и крепежные шпильки на отсутствие трещин.

— Замените все поврежденные детали.

— Перед сборкой следует очистить и просушить носок приводного вала и посадочную поверхность ведущей шестерни.

— Протрите вал и шестерню привода безворсовой тканью, смоченной в растворителе. Не прикасайтесь к посадочным поверхностям после протирки.

— Смонтируйте ведущую шестерню на приводной вал.

— Установите стопорную шайбу и гайку крепления шестерни, затяните гайку от руки.

— С помощью приспособления для замены шестерни топливного насоса и монтировки шириной 1,25 мм удерживайте шестерню привода топливного насоса на месте во время затяжки гайки ее крепления.

Установка ТНВД Каменс 2.8 автомобилей Газель Бизнес

— Установите топливный насос на картер распределительных шестерен.

— Вставьте и затяните болты крепления ТНВД Cummins ISF 2.8.

— Установите подающий топливопровод, идущий к общему топливопроводу высокого давления от топливного насоса высокого давления, и затяните опорные кронштейны.

— Подсоедините разъем жгута проводов исполнительного клапана электронной системы управления подачей топлива.

— Чтобы исключить искрение, отсоединяйте отрицательный (-) кабель аккумуляторной батареи первым, а подсоединяйте его последним.

— Подсоедините и установите подающие топливопроводы.

— Подсоедините и установите сливные топливопроводы.

— Подсоедините разъем жгута проводов исполнительного клапана электронной системы управления подачей топлива.

— Подключите аккумуляторные батареи. Заполните топливную систему.

Форсунка Камминз ISF 2.8

Работы по демонтажу форсунки Каменс 2.8:

— Снимите болт держателя форсунки.

— Для снижения опасности повреждения оправки уплотнения крышки клапана продолжайте поворачивать болт против часовой стрелки , когда резьба болта начнет проходить через оправку уплотнения крышки клапана. Снимите хомут держателя форсунки.

— Для снятия форсунки слегка строньте с места и поворачивайте форсунку вручную, осторожно раскачивая в различных направлениях.

— Если для снятия форсунки дизеля Cummins ISF 2.8 требуется дополнительное усилие, воспользуйтесь специальным приспособлением.

— Осторожно вставьте приспособление в выемку крышки коромысла клапана.

— При этом проследите, чтобы две две опоры приспособления надежно располагались под буртиком форсунки.

— С помощью ударного ползуна приложите к корпусу плавное вертикальное усилие в сторону Т-образной ручки.

— Не следует использовать приспособления с магнитной муфтой, магнитной тягой или электрически разъемом.

— Наденьте защитную крышку на сопло форсунки. Снимите защитную крышку с сопла форсунки.

— Опустите форсунку Камминз ISF 2.8 Газель Бизнес вертикально в ультразвуковую ванну.

— Соединители топливопроводов высокого давления и электрические разъемы должны быть защищены от попадания моющего средства.

— Для удаления отложений грязи можно также воспользоваться чистой тонкой безворсовой тканью.

— В ходе очистки не следует снимать защитные крышки с впускных и сливных топливопроводов.

— Проверьте наконечник форсунки на отсутствие нагара или коррозии.

— Закройте сопло форсунки защитной крышкой и до установки храните форсунку в чистом месте.

— Проверьте электрический разъем на отсутствие повреждений.

— Сопротивление на контактах должно быть в пределах 0,215 — 0,295 Ом.

Операции по установке форсунки дизеля Cummins ISF 2.8:

— Запишите код настройки форсунки и место установки каждой форсунки.

Читайте также:  Что будет если клапана двигателя перетянуть

— Код настройки форсунки представляет собой семизначный алфавитно-цифровой код, наносимый в верхней части форсунки.

— Перед установкой нанесите противозадирный состав или его аналог на те места форсунки, где она касается головки цилиндра.

— При установке форсунок следует использовать медную уплотнительную шайбу.

— Проверьте правильность подбора уплотнительной шайбы форсунки по толщине.

— Толщина уплотнительной шайбы форсунки Cummins ISF 2.8 — 1.5 мм.

— На форсунку следует устанавливать только одну медную уплотнительную шайбу.

— При установке форсунки соблюдайте осторожность, чтобы не повредить наконечник форсунки.

— Удалите грязь вокруг крышки клапана и снимите заглушку, установленную для защиты от попадания пыли и мусора в двигатель.

— Уплотнение крышки клапана следует слегка смазать, чтобы облегчить установку форсунок.

— Если форсунка не повреждена, устанавливайте ее при сборке в исходное положение.

— Используйте вертикальный прижим в качестве направляющей для аккуратной вставки форсунки в головку цилиндра через крышку клапана и выравнивания фитинга топливопровода с общим топливопроводом высокого давления.

— Неплотная затяжка подающего топливопровода при его подсоединении к форсунке Каменс 2.8 облегчит ее точную установку.

— Установите болт для закрепления зажима и затяните болт.

— Визуально сравните высоту форсунок, чтобы убедиться в отсутствии как недостающих, так и лишних медных уплотнительных колец.

— Установите топливопроводы высокого давления. Установите сливные топливопроводы.

— Вставьте электрические штекеры. Они должны издавать характерный звук при фиксации в электрическом гнезде форсунки.

— Используйте диагностический комплект для соединения с модулем ЕСМ.

— Выберите расширенный формат данных модуля ECM.

— Выберите функцию High Pressure Common Rail Injector Setup (Настройка форсунок топливной системы Камминз ISF 2.8 с общим топливопроводом высокого давления).

— Используя диагностический комплект введите код настройки форсунки.

— Отсоедините диагностический комплект. Запустите двигатель и убедитесь в отсутствии утечек.

Источник

Датчик давления топлива двигатель камминз на газель

Принципы работы системы

Система электронного управления дизелем позволяет снизить расход топлива и выбросы токсичных компонентов с отработавшими газами (ОГ), повысить качество регулирования (точность, плавность и быстродействие) и стабильность частоты вращения холостого хода, уменьшить жесткость рабочего процесса дизельного двигателя.

Электронная система управления дизельным двигателем состоит из датчиков и выключателей, электронного блока управления и исполнительных устройств, непосредственно воздействующих на системы двигателя.

Укомплектованность системы управления двигателем датчиками и исполнительными устройствами зависит от нормы токсичности, которой соответствует двигатель (например Евро-3 или Евро-4), комплектации автомобиля, назначения автомобиля.

Информация о режиме работы и состоянии двигателя поступает в систему управления от датчиков, которые преобразуют контролируемые (измеряемые) параметры двигателя в электрические сигналы, удобные для обработки и передачи в электронной системе управления. Сигналы от датчиков поступают в электронный блок управления, который, обработав по заданным алгоритмам полученную информацию, выдает управляющие сигналы исполнительным устройствам на основе запросов водителя и заложенной программы. Алгоритмы управления, реализуемые микропроцессором электронного блока, на каждом режиме работы двигателя вырабатывают оптимальное (наилучшее) по расходу топлива и нормам токсичности сочетание параметров впрыска топлива (цикловой подачи и угла опережения впрыска) и воздушного заряда (давления наддува и степени рециркуляции отработавших газов).

Электронный блок управления выполняет такие операции, как управление цикловой подачей топлива, давлением топлива в аккумуляторе, управление углом опережения впрыска, управление холостым ходом, функцией круиз-контроля, управление элементами подсистем снижения токсичности выхлопа.

Для упрощения поиска неисправностей в электронный блок управления встроена функция самодиагностики, которая контролирует множество параметров работы как собственно двигателя, так и всех элементов системы управления, и при определении неисправности сообщает об этом водителю включением индикаторов неисправности на панели приборов.

Блок управления двигателем

Блок управления двигателем Cummins ISF имеет разъем, состоящий из двух колодок. Колодка «А» (на фото слева) подключена к проводке автомобиля. Её состав может широко варьироваться в зависимости от комплектации автомобиля. По этой колодке в числе прочего блок управления получает питание и соединяется с массой автомобиля. Колодка «В» (на фото справа) объединяет в себе проводку двигателя: датчики и исполнительные механизмы.

Её элементный состав зависит от норм токсичности, которым соответствует рассматриваемый двигатель.

Индикаторы системы диагностики и системы управления двигателем

В системе применяются четыре индикаторные лампы: лампа останова, лампа предупреждающей сигнализации, лампа техобслуживания и лампы ожидания пуска. Когда ключ в замке зажигания устанавливается в положение «I» («включение приборов электрооборудования»), индикаторные лампы загораются, и приблизительно через 2 с они гаснут, одна за другой — таким способом происходит подтверждение того, что лампы находятся в рабочем состоянии и что они подключены правильно.
В случае возникновения высокой температуры охлаждающей жидкости, высокой температуры воздуха на впускном коллекторе, низкого давления масла или низкого уровня охлаждающей жидкости загорается и начинает мигать по истечению некоторого времени индикатор.

Этот режим мигания предупреждает о том, что возникшее состояние длится в течение некоторого времени и последующее состояние давления или температуры ухудшилось и двигатель близок к состоянию останова (возможен принудительный останов двигателя ЭБУ).

Предупреждающий индикатор (ДВС) предупреждает об обнаружении неисправности и сигнализирует о начале высвечивания кодов во время проведения бортовой диагностики. Включение лампы оповещает о неисправности двигателя, при этом транспортное средство остается в рабочем состоянии (ситуация не является аварийной). Необходимо провести обслуживание транспортного средства для устранения отказа.

Индикатор останова (STOP) сигнализирует о неисправности одной из основных систем. Во время выполнения бортовой диагностики мигание этой лампы соответствует кодам неисправностей, выявленных с помощью ЭБУ. Включение лампы предупреждает о возникновении серьезной неисправности. В этом случае двигатель автобуса должен быть выключен как можно скорее, насколько это позволяют требования безопасности.

Индикатор техобслуживания (КЛЮЧ) служит для оповещения о необходимости техобслуживания и для предупреждения водителя о том, что состояние жидкостей в двигателе находится вне допустимых пределов.

Индикатор ожидания запуска (START) предупреждает водителя, что для обеспечения надлежащего запуска необходимо применение средств холодного запуска двигателя.
Примечание : некоторые модели транспортных средств оснащаются выключателем проверки, который позволяет считывать коды неисправностей с помощью индикаторов, используя ботовую систему диагностики.

Наряду с основным диагностическим комплексом INSITE фирмы Cummins, диагностирование системы управления двигателем Cummins возможно следующими приборами:

• Сканматик 2
Согласно таблицы применяемости, по информации на 03.2015 г., возможности Сканматик 2 версии 2.19.0 в работе с блоком управления двигателем Cummins CM2220 (ISF 2.8/3.8) а/м ГАЗ таковы: считывание и стирание диагностических кодов неисправностей, считывание текущих данных, управление исполнительными механизмами, считывание паспорта блока управления, конфигурация, прописывание кодов форсунок.
Согласно таблицы применяемости, возможности Сканматик 2 версии 2.19.0 в работе с блоком управления двигателем Cummins CM2220 (ISF 2.8/3.8) а/м ПАЗ таковы: считывание и стирание диагностических кодов неисправностей, считывание текущих данных, управление исполнительными механизмами, считывание паспорта блока управления, прописывание кодов форсунок, регулировка оборотов холостого хода ±50 об/мин.
Текущую таблицу применяемости Сканматик 2 можно найти здесь .
Приобрести прибор можно в магазине издательства Легион-Автодата .

• ScanDoc
Согласно таблицы применяемости, по информации на 03.2015 г., возможности ScanDoc в работе с блоком управления двигателем Cummins CM2220 (ISF 2.8/3.8) а/м ГАЗ таковы: считывание и стирание диагностических кодов неисправностей, считывание паспорта блока управления, прописывание кодов форсунок, регулировка оборотов холостого хода ±50 об/мин.
Текущую таблицу применяемости ScanDoc можно найти по ссылке .
Приобрести прибор можно в магазине издательства Легион-Автодата — ScanDoc Compact / Scandoc (полный вариант)

Датчик положения коленчатого вала

Общая информация . Датчик положения коленчатого вала установлен в районе шкива коленчатого вала. Принцип действия датчика положения коленчатого вала основан на эффекте Холла. Датчик определяет положение коленчатого вала, и преобразует эти данные в сигналы (импульсы прямоугольной формы).

На основе этих сигналов электронный блок управления двигателем определяет частоту вращения коленчатого вала двигателя и корректирует момент начала открытия форсунки, а также продолжительность ее открытого состояния и угол опережения впрыска топлива.

Диагностика . Датчик имеет три провода: питание, массу и сигнальный провод. Питание датчика стабилизировано, составляет примерно 5 В и осуществляется блоком управления двигателем (контакт В13). Контакт массы также соединен с блоком управления (контакт В14). Сигнал датчика поступает на контакт В38 блока управления и представляет собой прямоугольные импульсы с низким уровнем примерно 0 В и высоким уровнем примерно 5 В.
Основные неисправности датчика лежат в трех областях:
1) Неисправность собственно датчика. Неисправность датчиков на эффекте Холла проявляется в основном после прогрева двигателя — от нагревания дает сбой встроенная в датчик электроника. Возникают пропуски импульсов.
2) Неисправность проводки. Проявляет себя в виде полного или частичного отсутствия сигнала датчика. Диагностируется проверкой напряжения на контактах датчика при включенном зажигании и одетых разъемах. А также прозвонкой проводки от датчика до блока управления при снятых разъемах.
3) Неисправность ротора датчика (задающего колеса). Следует отметить, что ремонт зубьев ротора в случае их повреждения недопустим — ротор должен быть заменен. Сварка меняет магнитные свойства материала и вероятны сбои сигнала датчика при прохождении мимо отремонтированного зуба.
Отсутствие движения стрелки тахометра в случае безуспешных попыток запуска двигателя может служить индикатором возможной неисправности датчика положения коленчатого вала.

Датчик положения распределительного вала

Общая информация . Датчик положения распределительного вала расположен на головке блока цилиндров и определяет момент прихода поршня цилиндра №1 в верхнюю мертвую точку на такте сжатия. На основе сигнала датчика электронный блок управления двигателем определяет очередность впрыска топлива по отдельным цилиндрам. Принцип действия датчика положения распределительного вала основан на эффекте Холла.

Диагностика . Датчик имеет три провода: питание, массу и сигнальный провод. Питание датчика стабилизировано, составляет примерно 5 В и осуществляется блоком управления двигателем (контакт В87). Контакт массы также соединен с блоком управления (контакт В63). Сигнал датчика поступает на контакт В62 блока управления и представляет собой прямоугольные импульсы с низким уровнем примерно 0 В и высоким уровнем примерно 5 В.
Основные неисправности датчика лежат в трех областях:
1) Неисправность собственно датчика. Неисправность датчиков на эффекте Холла проявляется в основном после прогрева двигателя — от нагревания дает сбой встроенная в датчик электроника. Возникают пропуски импульсов.
2) Неисправность проводки, включая разъемы. Проявляет себя в виде полного или частичного отсутствия сигнала датчика. Диагностируется проверкой напряжения на контактах датчика при включенном зажигании и одетых разъемах. А также прозвонкой проводки от датчика до блока управления при снятых разъемах.
3) Неисправность ротора датчика (задающего колеса).

Датчик давления наддува и датчик температуры воздуха в сборе

Общая информация . Датчик давления наддува установлен на впускном коллекторе и является датчиком пьезорезистивного типа. Датчик определяет давление наддува, создаваемого турбокомпрессором, непосредственно во впускном коллекторе, вырабатывая выходной сигнал на блок управления. В датчик давления наддува встроен датчик температуры наддувочного воздуха.

Читайте также:  В какую сторону крутится двигатель уаз

Диагностика . Датчик имеет четыре провода: питание, массу, сигнальный провод датчика давления наддува и сигнальный провод датчика температуры наддувочного воздуха. Питание датчика стабилизировано, составляет примерно 5 В и осуществляется блоком управления двигателем (контакт В89). Контакт массы также соединен с блоком управления (контакт В65). Сигнал датчика давления наддува поступает на контакт В70 блока управления и представляет напряжение, которое растет с ростом давления. Сигнал датчика температуры наддувочного воздуха поступает на контакт В23 блока управления.

Датчик давления в топливном коллекторе

Общая информация . Датчик давления топлива установлен на аккумуляторе топлива (топливном коллекторе) и измеряет мгновенные значения давления топлива в аккумуляторе с адекватной точностью и быстродействием. Топливо попадает в датчик через отверстие в аккумуляторе и канал в корпусе датчика, закрытого на конце диафрагмой, таким образом, топливо под давлением воздействует на диафрагму. Чувствительный элемент датчика, в свою очередь, преобразует давление в электрический сигнал. Этот сигнал посылается на электронный блок управления двигателем. На основе сигнала датчика давления топлива и в зависимости от сигналов других компонентов топливной системы, электронный блок управления двигателем вносит необходимые корректировки в работу топливной системы (создается необходимое давление топлива в аккумуляторе путем управления исполнительным элементом ТНВД).

Диагностика . Датчик имеет три провода: питание, массу и сигнальный провод. Питание датчика стабилизировано, составляет примерно 5 Вольт и осуществляется блоком управления двигателем (контакт В92). Контакт массы также соединен с блоком управления (контакт В68). Сигнал датчика поступает на контакт В69 блока управления и представляет напряжение, которое растет с ростом давления.

Датчик температуры охлаждающей жидкости

Общая информация . Датчик температуры охлаждающей жидкости установлен в корпусе термостата. Он определяет температуру охлаждающей жидкости двигателя и передает сигнал в электронный блок управления двигателем. Датчик представляет собой терморезистор. Сопротивление датчика уменьшается с возрастанием температуры охлаждающей жидкости. Электронный блок управления двигателем на основе напряжения сигнала датчика оценивает температуру охлаждающей жидкости и вносит необходимые корректировки в работу топливной системы.

Диагностика . Датчик имеет два провода: массу (контакт В43 блока управления) и сигнальный провод, который одновременно является питающим (контакт В46 блока управления). При включенном зажигании на контакте №2 отсоединенного разъема датчика должно присутствовать стабилизированное питание примерно 5 Вольт.

Датчик положения педали акселератора

Общая информация . Датчик положения педали акселератора необходим для определения степени нажатия водителем педали акселератора. Датчик представляет собой два потенциометра (переменных резистора), имеющие независимые цепи (питание, сигнал и «массу»). Таким образом, датчик состоит из двух каналов — №1 и №2. При нажатии на педаль акселератора, сопротивления резисторов датчика плавно изменяются пропорционально степени нажатия на педаль. Сигналы датчика положения педали акселератора, приходящие в электронный блок управления двигателем, сопоставляются с запрограммированными кривыми характеристик (также сопоставляются между собой сигналы от канала №1 и №2, это необходимо для контроля правильности показаний). Электронный блок, в свою очередь, генерирует выходные управляющие сигналы, на основе которых происходит управление работой топливной системы (например, определяет необходимую подачу топлива).

Датчик аварийного давления масла

Общая информация и диагностика . Датчик аварийного давления масла является релейным (переключающимся) датчиком, контакты которого замыкаются при падении давления масла в системе смазки двигателя ниже определенного уровня. Сигнал датчика поступает в блок управления на контакт 37B — датчик замыкает эту цепь на массу. Поступление сигнала от данного датчика при работающем двигателе (поступает сигнал датчика положения коленчатого вала) блок управления двигателя дает команду на включение индикатора неисправности «СТОП» на панели приборов. В зависимости от реализации системы обмена данными между комбинацией приборов и блоком управления двигателем, эта команда может передаваться как по отдельной цепи (контакт А49), так и по шине данных CAN (контакты 14А и 15А).

Датчик атмосферного давления

Общая информация . Датчик атмосферного давления определяет текущее атмосферное давление и передает сигнал в блок управления двигателем. Этот датчик необходим для корректной работы двигателя при разных высотах над уровнем моря.

Диагностика . Датчик имеет три провода: питание, массу и сигнальный провод. Питание датчика стабилизировано, составляет примерно 5 В и осуществляется блоком управления двигателем (контакт В88). Контакт массы также соединен с блоком управления (контакт В64). Сигнал датчика поступает на контакт В72 блока управления и представляет напряжение, которое меняется с изменением давления.

Топливный насос высокого давления (ТНВД)

Общая информация . На ТНВД расположен электромагнитный регулятор давления топлива. Он поддерживает рабочее давление топлива в аккумуляторе в зависимости от нагрузки на двигатель. При необходимости увеличения давления топлива в аккумуляторе клапан электромагнитного регулятора закрывается по сигналу от электронного блока управления двигателем, перекрывая ступень высокого давления от линии низкого давления (возврата топлива). При необходимости снижения давления топлива в аккумуляторе клапан электромагнитного регулятора, наоборот, открывается по сигналу от электронного блока управления двигателем, перепуская часть топлива в линию возврата и снижая тем самым давление топлива в аккумуляторе.

Общая информация . Форсунки осуществляют впрыск топлива в цилиндры двигателя по сигналу, поступающему от электронного блока управления двигателем. В аккумуляторной топливной системе Common Rail, устанавливаются форсунки с электромагнитным приводом.

Привод системы изменения геометрии турбокомпрессора

Общая информация . На некоторых модификациях двигателя установлен турбокомпрессор с изменяемой геометрией. Привод системы изменения геометрии установлен на турбокомпрессоре и управляет системой изменения геометрии (положения лопаток) турбокомпрессора. Электронный блок управления двигателем, получая данные от датчика положения коленчатого вала, датчика температуры охлаждающей жидкости, датчика температуры наддувочного воздуха, датчика давления наддува и датчика атмосферного давления, определяющие нагрузку на двигатель и условия его работы, производит вычисления оптимального положения лопаток и подает сигнал на электродвигатель привода. Таким образом регулируется производительность компрессорного аппарата турбокомпрессора.

Шина данных CAN

Общая информация и диагностика . Шина данных CAN (Controller Area Network) — это последовательная высокоскоростная линия передачи данных, разработанная компанией Bosch. Обладает высокой помехоустойчивостью и защитой от ошибок. Используется для уменьшения количества проводов при обмене данными в автомобиле. Каждый из блоков управления, работающих на этой шине, передает и принимает данные выборочно. Шина выполнена по двухпроводной схеме: канал CAN-High (H) и CAN-Low (L). Провода скручены в витую пару для улучшения помехоустойчивости шины. Максимальная длина нескрученных проводов CAN-шины не должна превышать 40 мм. Для обеспечения необходимой разности потенциалов между H и L каналами, а также для предотвращения появления ошибок в сообщениях, возможных при отражении сигналов, внутри блоков, на концах шины, параллельно выводам CAN-шины встроены резисторы, обычно номиналом 120 Ом. Эти резисторы также помогают определить исправность проводки шины на разных ее ветвях: измеряя сопротивление на соответствующих контактах снятых разъемов блоков управления, работающих на шине CAN, должно получаться обычно примерно 120 или 60 Ом (один резистор 120 Ом или их параллельное включение), в зависимости от того, разъем какого блока снят (возможны варианты). В зависимости от реализации системы, эти резисторы могут быть установлены внутри блоков управления, внутри промежуточных разъемов CAN-шины или внутри специальных терминаторов шины CAN.

Пример построения шины данных CAN на автомобиле (возможны различные варианты):

Пример осциллографирования сигналов CAN-шины. Загруженность информационной шины зависит от количества блоков на ней и от количества передаваемой информации.

Сигналы на обоих каналах всегда симметричны друг другу и находятся в противофазе. В состоянии покоя на обоих каналах шины (High и Low) должно наблюдаться порядка 2,5 В (соответствует логической «1»). Сигнал канала CAN-Low (L) переключается между своим высоким уровнем 2,5 В (логическая «1») и низким уровнем 1,5 В (логический «0»). Сигнал канала CAN-High (H) переключается между своим низким уровнем 2,5 В (логическая «1») и высоким уровнем 3,5 В (логический «0»). Таким образом при переключении шины на логический «0» разница потенциалов между каналами составляет 2 В.

Диагностика . Возможные неисправности CAN-шины лежат в трех областях:
1) Неисправность проводки/разъемов (обрыв, короткое замыкание, замыкание на массу или источник питания).
2) Неисправности блоков управления, работающих на шине.
3) Наложение наводок на проводку CAN-шины (неправильная трассировка проводки, проводка не скручена в витую пару).

Важно! На автомобилях ГАЗель с двигателем ISF2.8s3129T Евро-3 не установлен второй терминатор 120 Ом шины данных CAN (первый встроен в блок управления двигателем). В связи с этим возможны проблемы с подключением неоригинального диагностического оборудования к блоку управления двигателем. В оригинальном диагностическом оборудовании этот терминатор встроен в разъем диагностического прибора параллельно выводам шины CAN.

Система снижения токсичности выхлопных газов

Современные двигатели должны соответствовать всё более ужесточающимся требованиям к токсичности их выхлопных газов. Для того, чтобы двигатель соответствовал более жестким требованиям экологичности, оптимизируют его конструкцию, совершенствуют систему управления, топливную аппаратуру и устанавливают дополнительные подсистемы снижения токсичности выхлопных газов. Ко всему прочему должно использоваться соответствующее топливо.

На следующем рисунке приведен примерный график эффекта от внедрения подсистем снижения токсичности на соответствующие параметры выхлопа (NO X — оксиды азота, ТЧ — твердые частицы (в т.ч. сажа)).

Подсистема рециркуляции отработавших газов (EGR)

Общая информация . Подсистема рециркуляции отработавших газов (EGR) устанавливается на некоторые модели двигателей для достижения норм токсичности Евро-3, а вместе с коррекцией топливоподачи и норм Евро-4. На моделях двигателей, соответствующих нормам Евро-3, она может отсутствовать. Подсистема EGR снижает выбросы оксидов азота (NO X ) в атмосферу. В воздухе присутствует молекулярный азот и в нормальных условиях он инертен и не вступает в реакцию с кислородом, также присутствующем в воздухе. Но попадая в камеру сгорания двигателя, под воздействием высоких температур, азот окисляется, вследствие чего образуются токсичные оксиды азота. И чем выше температура, тем больше возникает оксидов азота Система рециркуляции ОГ направляет часть отработавших газов из выпускного коллектора двигателя через впускной коллектор обратно в камеры сгорания, снижая тем самым температуру сгорания топливовоздушной смеси, вследствие чего снижается образование оксидов азота.

Состав подсистемы EGR . Существует несколько вариантов исполнения подсистемы EGR на двигателях Cummins серии ISF, в зависимости от которого различается её состав. На двигателях ISF2.8 подсистема EGR включает в себя: клапан системы EGR в сборе, датчик массового расхода воздуха, блок привода дроссельной заслонки.
Клапан EGR имеет электропривод, который по команде блока управления открывает и закрывает канал рециркуляции на необходимую величину. Количество рециркулируемых газов определяется по датчику массового расхода воздуха: снижение расхода воздуха дает понять блоку управления, что в двигатель поступают отработавшие газы. Сервопривод дроссельной заслонки установлен на впускном коллекторе и необходим для регулирования положением дроссельной заслонки. Сервопривод состоит из электродвигателя постоянного тока и датчика положения дроссельной заслонки. Сервопривод дроссельной заслонки в системе впуска дизельного двигателя служит для увеличения степени рециркуляции ОГ путем снижения повышенного давления во впускном коллекторе (это достигается прикрытием дроссельной заслонки), вследствие чего происходит засасывание выхлопных газов во впуск. Регулирование дроссельной заслонкой осуществляется только на малых скоростных режимах.

Читайте также:  Арканум как сломать паровой двигатель

Недостатки EGR . В процессе эксплуатации, сажа, содержащаяся в выхлопных газах, забивает каналы рециркуляции и клапан EGR. Таким образом, рано или поздно перемещение клапана блокируется и он перестает выполнять свои функции. Обычно блокировка клапана происходит при его частичном открытии, так, что рециркулируемые газы всегда подаются во впускной тракт, даже когда этого происходить не должно. Это ведет к нарушению состава топливо-воздушной смеси, и как следствие, потере доступной мощности, повышению дымности выхлопа. Эта проблема не всегда решается промывкой клапана: он может выйти из строя и потребуется его замена.
Твердые частицы выхлопных газов также засоряют впускной коллектор, впускные клапаны. Засорение бывает на столько сильным, что автомобиль может просто встать — воздух в двигатель перестает поступать. Промывка впускного коллектора решает эту проблему. Ко всему прочему из-за EGR моторное масло быстрее теряет свои свойства.
Кроме того EGR ухудшает топливную экономичность дизеля, ведет к снижению его тепловой эффективности.

Как видим, данная подсистема несет определенный вред двигателю, поэтому многие автовладельцы удаляют её элементы: удаляются все патрубки рециркуляции газов, клапан рециркуляции, охладитель газов (теплообменник, в котором тепло рециркулируемых выхлопных газов отдается в систему охлаждения двигателя), устанавливаются заглушки взамен всех патрубков. Но этого мало: если только ограничиться физическим удалением подсистемы EGR, то блок управления, который контролирует её работу, определит неисправность и сообщит об этом водителю, включив индикатор на панели приборов. Поэтому дополнительно требуется перепрошивка блока управления двигателем (замена программы управления — чип-тюнинг), в результате которой блок перестанет контролировать элементы EGR, а также рабочие карты управления будут заменены на карты, соответствующие нормам Евро-3.

Сажевый фильтр (DPF)

Общие сведения . Сажа выхлопных газов двигателей внутреннего сгорания, действуя как активированный уголь, собирает в себя вредные вещества и является канцерогеном, поэтому вдыхание её крайне нежелательно. Снизить количество сажи и других твердых частиц в выхлопных газах автомобиля призван сажевый фильтр (Diesel Particulare Filter, DPF). Его функция состоит в улавливании твердых части из выхлопных газов и периодическом их сжигании (т.н. регенерация сажевого фильтра). Суммарная площадь поверхности фильтрующего элемента близка к площади двух футбольных полей. Как видно из приведенного выше графика, DPF работает совместно с EGR: EGR снижает оксиды азота, но повышает количество твердых частиц в отработавших газах, что в свою очередь решается с помощью DPF.

Состав подсистемы DPF . Подсистема DPF состоит из сажевого фильтра и датчика перепада давления в сажевом фильтре. В таком составе эта система устанавливается, например, на автобусы Next Bus. Датчик перепада давления в сажевом фильтре необходим для контроля заполненности фильтра. Его показания позволяют блоку управления определить момент, когда требуется провести регенерацию. Регенерация сажевого фильтра осуществляется его разогревом до температуры примерно 700 градусов, вследствие чего твердые частицы, осевшие в его каналах, полностью выгорают, образуя газообразные оксиды углерода.

Недостатки DPF . Ошибки в эксплуатации автомобиля, низкое качество топлива, неподходящие смазочные материалы, использование неподходящих присадок к топливу и маслу, частые поездки на короткие расстояния и городской режим поездок часто ведут к неустранимым неисправностям сажевого фильтра. Его регенерация становится невозможной. Столкнувшись с этой проблемой, автовладелец, как и в случае с катализатором, имеет два пути её решения: замена на новый или удаление сажевика. Стоимость нового сажевого фильтра велика и зачастую его удаление — единственный способ вернуть автомобиль в рабочее состояние. И в этом случае также потребуется перепрошивка блока управления двигателем, программно отключающая сажевый фильтр.

Селективный каталитический восстановительный нейтрализатор (SCR)

Данная подсистема предназначена для снижения токсичных оксидов азота NO X (NO, NO 2 ) в выхлопных газах. Наличие этой подсистемы исключает необходимость использования EGR для достижение норм Евро-4, а применение её совместно с другими системами снижения токсичности, позволяет достичь норм Евро-5 и Евро-6. Как видно из графика, при использовании этой подсистемы, двигатель работает на режимах, оптимизированных на снижение твердых частиц в выхлопных газах (ТЧ-оптимизированное сгорание), а повышение в этом случае содержания NO X в отработавших газах решается подсистемой SCR. Принцип работы системы SCR заключается в обработке отработавших газов (ОГ) водным раствором мочевины в восстановительном каталитическом нейтрализаторе. Содержащиеся в отработавших газах оксиды азота NO X (NO, NO 2 ) после химической реакции с восстановителем AdBlue в катализаторе превращаются в азот N 2 и воду H 2 O.

Жидкость системы снижения токсичности (мочевина) . Используемый водный раствор мочевины известен под торговой маркой AdBlue. Реагент AdBluе производится по особой технологии из мочевины высокой степени отчистки и деминерализованной воды. Доля мочевины в AdBlue составляет 32,5%. При такой концентрации реагент имеет наиболее низкую точку замерзания, равную –11°C. Любое отклонение от данной концентрации ведет к повышению температуры замерзания. Подогрев системы подачи мочевины может быть осуществлен как самостоятельными нагревательными элементами, так и от системы охлаждения транспортного средства (в этом случае используется клапан подогрева бака). Среднее потребление реагента варьируется в зависимости от модели двигателя и в среднем должно составлять около 4% от потребления дизельного топлива для двигателей, удовлетворяющим требованиям Евро-4. Срок хранения реагента – 1 год.

Меры предосторожности . Реагент не пожароопасен и классифицируется как безопасный согласно директиве ЕС 67/548/ЕЕС. Попадание вещества в организм в незначительных количествах не представляет опасности. Если AdBlue попал в органы пищеварения, необходимо прополоскать ротовую полость и запить большим количеством воды. Если чувство недомогания и дискомфорт не проходят, следует обратиться к врачу. При длительном контакте или погружении частей тела в резервуар с веществом возможен ожог кожных покровов. При возможности контакта с веществом следует пользоваться латексными перчатками. Несмотря на то, что продукт не классифицирован как раздражающее химическое вещество, непосредственное попадание в глаза может вызвать непродолжительный дискомфорт, характеризующийся слезотечением или конъюнктивальным покраснением. В случае непосредственного попадания раствора в глаза, их следует незамедлительно промыть большим количеством воды и обратиться к врачу. Следует тщательно ликвидировать разливы реагента в целях предупреждения травматизма, так как поверхность разлива становится скользкой.

Внимание : следует избегать попадания жидкости на детали автомобиля. Если это произошло, жидкость необходимо смыть водой и убрать остатки с поверхности кузова. Если AdBlue высохнет и кристаллизируется на поверхности, это вызовет коррозию.

При высоких температурах (примерно 70°C — 80°C) AdBlue распадается, что приводит к образованию аммиака и возможному появлению неприятного запаха. Загрязнение посторонними веществами и бактериями может сделать AdBlue непригодным для применения. Вытекшая и кристаллизовавшаяся мочевина оставляет белые пятна, которые можно отчистить с помощью воды и щётки (по возможности немедленно). AdBlue обладает высокой способностью к просачиванию, поэтому следует защищать электрические узлы и разъёмы от попадания AdBlue. Применять только соответствующий разрешённому стандарту производителя AdBlue в оригинальной упаковке. Для исключения загрязнений запрещается повторно применять слитый из системы AdBlue.

Внимание : применение в системе нейтрализации воды, водного раствора обычной мочевины и других жидкостей отличных от реагента AdBluе не допускается, так как это может привести к выходу из строя системы нейтрализации. При работе с AdBlue соблюдайте установленные правила. Практика показывает, что именно различные загрязнения самой жидкости являются самой распространенной причиной выхода из строя систем SCR. Жидкость очень чувствительна к материалам, с которыми контактирует. Это, в первую очередь, металлы: цинк, алюминий, медь, чугун и латунь. При контакте с этими металлами образуются соли, которые при попадании в катализатор могут вывести его из строя.

Катализатор . После подачи мочевины в катализатор на гидролизном участке, мочевина распадается на аммиак NH 3 и углекислый газ CO 2 . В восстановительном катализаторе аммиак NH 3 реагирует с оксидами азота NO X , образуя молекулярный азот N 2 и воду H 2 O. Для нормальной работы катализатора необходимо чтобы он был нагрет до температуры не менее 200°C. Для контроля температуры катализатора и температуры ОГ применяются датчики температуры ОГ на входе и на выходе из нейтрализатора. Для контроля эффективности работы катализатора применяется датчик концентрации оксидов азота на выходе из нейтрализатора.

Система впрыска мочевины . Подача мочевины в выпускную систему осуществляется Блоком дозирования реагента (мочевины), имеющем в своем составе насос, элементы дозирования и фильтрации. Для равномерного распределения мочевины в потоке ОГ применяется микшер. В баке мочевины установлен датчик уровня со встроенным датчиком температуры. Впрыск мочевины начинается при достижении катализатором рабочей температуры, при условии что при низкой температуре окружающей среды обеспечивается достаточное количество жидкой мочевины. Впрыск мочевины прерывается при малом объёме потока ОГ (холостой ход) и при слишком низкой температуре ОГ.

Внимание! Эксплуатация автомобиля без реагента AdBluе приводит к нарушению температурного режима работы и выходу системы нейтрализации из строя.

Недостатки SCR . Наличие данной системы на автомобиле обязывает водителя поддерживать уровень мочевины в баке, поскольку эксплуатация автомобиля с пустым баком запрещена, а инфраструктура продажи еще мало развита. Также накладываются определенные требования к качеству используемых топлива и смазочных материалов.

Комплектация системы управления двигателем дополнительными функциями зависит от комплектации автомобиля. Эти функции программируются диагностическим оборудованием.

Ниже описаны некоторые дополнительные функции:
— Система поддержания постоянной скорости (круиз-контроль). Эта функция может быть активирована даже на автомобилях, изначально не оборудованных ею. Для этого устанавливаются соответствующие кнопки управления этой системой и меняется программа блока управления.
— Ограничение скорости. Эта функция может запрограммирована на заводе-изготовителе на автомобилях, предназначенных для перевозки детей. Отключение этой функции, в случае если назначение автомобиля изменилось, также возможно посредством замены программы управления.
— Повышение частоты вращения коленчатого вала двигателя на холостом ходу. Эта функция может быть активирована на автомобилях, укомплектованных системой поддержания скорости. Для этого меняется программа блока управления, после чего установка частоты вращения двигателя на неподвижном автомобиле осуществляется кнопками круиз-контроля.
— Функции необходимые для работы системы отбора мощности: управление двигателем при постоянной частоте вращения, удаленный акселератор.
— Моторный тормоз (если оборудован).
— Некоторые защитные функции, необходимые для работы двигателя и других систем: фиксация максимальных оборотов двигателя, мониторинг зарядки аккумулятора, иммобилайзер, периодичность обслуживания, ограничение крутящего момента (защита передачи), переключения на более низкую передачу.

Источник

Adblock
detector