Датчик частоты вращения управление двигателем что это

Датчик частоты вращения коленчатого вала

Датчик частоты вращения коленчатого вала предназначен для синхронизации управления системой впрыска и системой зажигания, поэтому другое название датчика – датчик синхронизации. В некоторых источниках информации датчик носит название — датчик начала отсчета. Сигналы от датчика используются системой управления двигателем для установления:

  • момента впрыска топлива;
  • количества впрыскиваемого топлива;
  • момента зажигания (бензиновые двигатели);
  • угла поворота распределительного вала при работе системы изменения фаз газораспределения;
  • времени включения клапана адсорбера при работе системы улавливания паров бензина.

Наибольшее распространение получил датчик частоты вращения коленчатого вала индуктивного типа. В некоторых системах управления двигателем устанавливается датчик синхронизации, построенный на эффекте Холла.

Индуктивный датчик представляет собой магнитный сердечник с расположенной вокруг него обмоткой. Принцип работы датчика заключается в наведении электродвижущей силы в обмотке при взаимодействии магнитного поля датчика с металлическим задающим диском (диском синхронизации).

Задающий диск имеет по окружности 58 зубьев с пропуском на два зуба, т.н. диск типа 60-2. На отдельных дизельных двигателях для ускорения определения положения коленчатого вала и, соответственно, облегчения запуска устанавливается задающий диск типа 60-2-2 (с двумя пропусками через 180°).

При вращении коленчатого вала впадины зубьев задающего диска изменяют магнитный поток, вследствие чего в обмотке датчика формируется электрический импульс.

Датчик синхронизации позволяет определять два параметра:

  1. частоту вращения коленчатого вала;
  2. точное положение коленчатого вала.

Число оборотов коленчатого вала определяется по количеству зубьев, проходящих через датчик в единицу времени. Пропуск зубьев служит в качестве исходной точки для определения положения коленчатого вала. Он соответствует, как правило, нахождению поршня первого цилиндра в верхней мертвой точке.

Датчик частоты вращения коленчатого вала, построенный на эффекте Холла, взаимодействует с задающим диском несколько иной конструкции. Диск выполнен в виде металлических сегментов, разделенных металлическими вставками. Сегменты представляют собой постоянные магниты с чередующими северными и южными полюсами. В качестве начала отсчета используется сегмент большей ширины. Таким образом, получился задающий диск типа 60-2.

При неисправности датчика частоты вращения коленчатого вала (отсутствии сигнала) двигатель останавливается и повторно не запускается.

Источник

Датчики частоты вращения

В качестве датчиков частоты вращения в системах автоматики применяют тахогенераторы — маломощные электрические машины постоянного и переменного тока. Для преобразования частоты вращения электродвигателей в напряжение применяют тахометрические мосты.

Тахогенераторы постоянного тока

Тахогенераторы постоянного тока в зависимости от способа возбуждения выполняют двух типов: магнитоэлектрические (возбуждаемые от постоянных магнитов) и электромагнитные (возбуждаемые от специальной обмотки) (рис. 1 а, б).

Напряжение на выходе тахогенератора при постоянном потоке возбуждения U вых = Е — IR я = Се ω — IR я

где Се = ( U я — I я R я)/ ω — постоянная машины, определяется из паспортных данных.

На холостом ходу ( I =0) напряжение U вых = Е = Се ω . Следовательно, статическая характеристика тахогенератора U вых = f ( ω) при холостом ходе линейна, так как Се = const (прямая I, рис. 1, в).

Рис. 1. Датчики частоты вращения (тахометрические генераторы постоянного тока): а) с возбуждением от постоянных магнитов, б) с электромагнитным возбуждением, в) статическая характеристика

При нагрузке статическая характеристика становится нелинейной (кривая 2). изменяется ее наклон, что является следствием реакции якоря и падения напряжения в обмотке якоря тахогенератора. В реальных тахогенераторах возникает падение напряжения на щетках, что приводит к появлению юны нечувствительности (кривая 3).

Для уменьшения искажения статических характеристик тахогенераторов используют при небольших нагрузках ( I н = 0,01 — 0,02 А). Ток в цепи якоря I я = Е/( R я + R н), а выходное напряжение U вых = Е — IR я = Се ω — IR я.

Тахогенераторы постоянного тока широко применяются в автоматических системах регулирования электроприводов в качестве датчиков частоты вращения. Их достоинства — малая инерционности высокая точность, малые габариты и масса, а для магнитоэлектрических тахогенераторов еще и отсутствие источника питания. Недостаток — наличие коллектора со щетками.

Тахогенераторы переменного тока

Синхронные тахогенераторы — однофазная синхронная машина с ротором в виде постоянного магнита (рис. 2, а), У синхронных тахогенераторов с изменением угловой скорости вместе с амплитудой изменяется и частота выходного напряжения. Статические характеристики нелинейны. В динамической отношении синхронные тахогенераторы являются безинерционными элементами.

Асинхронный тахогенератор — это двухфазная асинхронная машина с полый немагнитным ротором (рис. 2, б). На статоре асинхронного тахогенератора размещаются две сдвинутые на 90 обмотки (возбуждения ОВ и генератора ОГ). Обмотка ОВ подключается к источнику переменного тока.

Рис. 2. Тахомерические генераторы переменного тока: а — синхронный, б — асинхронный

В обмотке OГ, являющейся выходной, при вращении ротора наводятся э.д.с. трансформации и вращения. Под действием э.д.с. вращения на выходе тахогенератора возникает напряжение U вых.

Статическая характеристика асинхронного тахогенератора также нелинейна. При изменении вращения ротора фаза выходного напряжения изменяется на 180°.

Асинхронные тахогенераторы используют как датчики угловой скорости, частоты вращения и ускорений. В последнем случае обмотка возбуждения асинхронного тахогенератора подключается к источнику постоянного тока.

Достоинства асинхронных тахогенераторов — надежность, малая инерционность. Недостатки — наличие на выходе остаточной э.д.с. при неподвижном роторе, относительно большие габариты.

Тахометрические мосты постоянного и переменного тока применяют в системах автоматики для создания обратной связи но частоте вращения электрических двигателей. Это позволяет упростить систему, так как отпадает необходимость в дополнительной электрической машине — тахогенераторе. При этом уменьшаются статические и динамические нагрузки на исполнительный двигатель.

Тахометрический мост постоянного тока представляет собой специальную мостовую схему (рис. 3, а), в одно из плеч которой включен якорь двигателя R я, а в другие — резисторы R1 , R2 , R п. К диагонали а b моста подводится напряжение сети U, питающее якорь двигателя, а с диагонали cd снимается напряжение U вых пропорциональное угловой скорости ω.

Читайте также:  Какой двигатель можно поставить на мазду фамилия

Рис. 3. Тахометрический мост постоянного тока (а) и бесконтактное измерительное устройство частоты вращения асинхронного двигателя (б)

Если ток в выходной цепи отсутствует, то

Решая совместную систему уравнений, получим

Напряжение на выходе тахометрического моста

где Kтм — коэффициент передачи тахометрического моста.

Погрешность тахометрического моста составляет ±(2 — 5)%. В динамическом отношении тахометрические мосты постоянного тока являются безинерционным звеном.

Для контроля частоты вращения ротора асинхронного электродвигателя применяют бесконтактное измерительное устройство (рис. 3, б), содержащее измерительный трансформатор тока ТА и напряжения TV.

Источник

Устройство автомобилей

Микропроцессорное управление двигателем

Виды датчиков и их назначение

Микропроцессорная система управления корректирует состав горючей смеси, поступающей в цилиндры двигателя и процессы ее поджигания на основании информации, поступающей от многочисленных датчиков, расположенных в разных местах двигателя и его систем. Эти датчики позволяют процессору сформировать команды продолжительности впрыска топлива форсунками, а также момент подачи напряжения искрообразования на свечи зажигания.
Благодаря этой сложной информационной сети, поставляющей в «мозговой центр» управления двигателем данные о количестве поступившего в цилиндры воздуха, его температуре, температуре двигателя, положению педали акселератора и дроссельной заслонки, угловом перемещении коленчатого и распределительного валов, а также о составе отработавших газов, достигается высокая экономичность и динамическая эффективность работы двигателя.

Более подробная информация о типах датчиков и их классификация приведена на этой странице.

Датчик массового расхода воздуха

Датчик массового расхода воздуха (ДМРВ) преобразует значение массы воздуха, поступающего в цилиндры, в электрический сигнал. Контроллер использует информацию от датчика массового расхода топлива воздуха для определения длительности импульса открытия форсунок.
Чаще всего этот датчик расположен между воздушным фильтром и шлангом впускной трубы.

В зависимости от устройства и принципа действия можно выделить несколько типов датчиков массового расхода воздуха, которые наиболее часто применяются на автомобилях:

  • механические (флюгерные);
  • ультразвуковые;
  • термоанемометрические.

Термоанемометрический датчик массового расхода воздуха применяется на автомобилях ВАЗ и состоит из корпуса, проточного канала с размещенной на входе решеткой-стабилизатором и диффузора. В обводном канале размещены измерительные и термический компенсационные элементы, а также соединительная электрическая колодка.
Датчик установлен во впускном тракте между воздушным фильтром и корпусом дроссельной заслонки.

Через сетку из тонких платиновых нитей (измерительных элементов), нагретых электрическим током до температуры 170 ˚С, проходит весь поступающий в цилиндры двигателя воздух. Чем больше поток, тем выше должна быть сила тока, чтобы поддерживать температуру нитей на постоянном уровне.

Входящий поток воздуха охлаждает чувствительный элемент, следовательно, для поддержания его температуры необходим больший ток. По тому, насколько увеличился ток, блок управления двигателем определяет, какое количество воздуха поступает в двигатель.
Некоторые ДМРВ выдавали частотные выходные сигналы, т.е. у них изменяемой величиной была частота выходных импульсов. Такие датчики массового расхода воздуха применялись в двигателях автомобилей ВАЗ, оснащенных контроллером «Январь-4.1».

Отсутствие регулировочных винтов указывает на то, что данная система управления является адаптивной. Внутренняя электронная схема сконструирована таким образом, что температура измерительной нити остается постоянной, даже если она на 120 ˚С выше температуры поступающего воздуха.

Обобщенная электрическая схема соединений датчика содержит измерительные элементы, термические компенсационные резисторы и блок усиления сигналов, соединенный с контроллером. Выходной сигнал датчика – частотный.

Загрязнение нити может привести к неточному определении параметров горючей смеси. Функция прокаливания нити включается, когда система отключена. В этом случае происходит нагревание нити до 1000 ˚С, что позволяет удалить скопившиеся на ней отложения.

Современные датчики массового расхода воздуха имеют более сложное устройство. Вместо проволоки или сетки, в качестве чувствительного элемента используется тонкая пленка, на которой размещены температурные датчики и нагревательный элемент. В центре пленки находится зона подогрева, степень ее нагрева контролируют температурные датчики.
По обе стороны пленки расположены два дополнительных температурных датчика, т.е. один находится прямо на пути воздушного потока, а второй скрыт за пленкой. Когда автомобиль стоит на месте, температура обоих датчиков одинакова, при движении первый датчик охлаждается входящим потоком воздуха, а второй имеет практически неизменную температуру. Разница температур температурных датчиков пропорциональна массе всасываемого воздуха.

При отказе датчика массового расхода воздуха блок управления переходит в аварийный режим работы, используя для формирования команд длительности впрыска только информацию о положении дроссельной заслонки. В результате возрастает расход топлива, а частота вращения коленчатого вала не опускается ниже 1500 об/мин.
Чтобы проверить исправность датчика, его следует отключить от электрического разъема. Если автомобиль при отключении датчика становится резвее, значит, ДМРВ неисправен.

О сканировании электронных блоков управления и считывании ошибок, в том числе — неисправности датчиков, подробно описано на этой странице.

Датчик скорости

Датчик скорости автомобиля (ДСА) преобразует значение скорости автомобиля в электрический сигнал. Он предназначен для формирования импульсов, количество которых в единицу времени пропорционально скорости автомобиля.

Датчик скорости установлен на коробке передач (сверху), информирует контроллер о скорости автомобиля и имеет средний уровень надежности. Вблизи датчика часто происходит окисление разъемов и проводов.
Выход из строя датчика скорости приводит к тому, что двигатель глохнет при движении в режиме холостого хода, т. е. при закрытой дроссельной заслонке.

Этот датчик при неисправности передает ошибочные данные, что и приводит к нарушению работы не только двигателя, но и других узлов автомобиля. Измеритель скорости автомобиля (ДСА) отсылает сигналы на датчик, который контролирует работу мотора на холостых оборотах, а также управляет потоком воздуха, который обходит дроссельную заслонку. Чем больше скорость машины, тем больше частота этих сигналов.

Читайте также:  Система охлаждения двигателя фольксваген крафтер схема

Основные признаки неисправности датчика скорости:

  • Отсутствует стабильность холостого хода;
  • Неправильно функционирует или вообще не функционирует спидометр;
  • Увеличенный расход топлива;
  • Снижение приемистости двигателя.

Также блок управления может выдавать ошибку об отсутствии сигналов на ДСА.
Чаще всего неисправность вызывается разрывом цепи, поэтому, прежде всего, нужно проверить ее целостность.

Датчики кислорода

Кислородный датчик (Oxygen Sensor), или, как его еще называют — λ-зонд (лямбда-зонд) — служит для определения концентрации кислорода в отработавших газах. Благодаря информации, поставляемой электронному блоку управления (ЭБУ) этим датчиком, «мозговой центр» автомобиля может корректировать состав горючей смеси, добавляя или убавляя топливо при необходимости. В системе питания современного автомобиля, как правило, два λ-зонда — диагностический и управляющий.

Датчик кислорода диагностический преобразует значение концентрации кислорода в отработавших газах после нейтрализатора в электрический сигнал.

Датчик кислорода управляющий преобразует значение концентрации кислорода в отработавших газах до нейтрализатора в электрический сигнал.

Кислородный датчик представляет собой своеобразный гальванический элемент (источник электрического тока), размещенный в системе выпуска отработавших газов перед нейтрализатором (в среду горячих газов).
Внешне кислородный датчик напоминает свечу зажигания, имеет резьбовую часть с резьбой 18×1,5 мм, которая вворачивается в трубу системы выпуска отработавших газов, и несколько отходящих от наружного хвостовика проводов.

Чувствительным элементом кислородного датчика является омываемый отработавшими газами керамический наконечник 4 ( см. рис. ), защищенный от механических повреждений металлическим кожухом 5 с прорезями для свободного прохода отработавших газов. Внутренняя часть керамического наконечника омывается атмосферным воздухом, проникающим через щели в корпусе датчика.

Кислородные датчики бывают двух типов: циркониевые и титановые.
Циркониевые кислородные датчики используют керамический элемент на основе оксида циркония ZrO, покрытый платиной – гальванический элемент, меняющий напряжение в зависимости от температуры и наличия кислорода в окружающей среде. Циркониевые датчики наиболее распространены.

Титановые кислородные датчики используют керамический элемент на основе диоксида титана TiO2 и представляют собой резистор, сопротивление которого изменяется в зависимости от температуры и наличия кислорода в окружающей среде. Принцип работы титановых кислородных датчиков напоминает принцип работы датчиков температуры охлаждающей жидкости.

Для эффективной работы датчика он должен быть достаточно прогрет (но не перегрет), а также не должен быть загрязнен свинцом и кремнием, содержащимися в выхлопных газах. Для ускорения прогрева датчиков кислорода большинство современных датчиков кислорода оснащаются специальными электрическими подогревательными устройствами.

По сигналам кислородных датчиков контроллер корректирует длительность впрыска, изменяя тем самым состав горючей смеси в цилиндрах двигателя.

Датчик фаз

Датчик фаз или, как его еще называют – датчик положения распределительного вала (ДПРВ), выдает на контроллер сигнал о том, что поршень первого цилиндра находится в верхней мертвой точке (ВМТ) на такте сжатия топливовоздушной смеси. Датчик фаз применяют в системе с последовательным впрыском топлива и устанавливают с левой передней стороны головки цилиндров.

Принцип его действия основан на эффекте Холла. В пазу датчика находится обод стального диска с прорезью. Этот диск закреплен на шкиве впускного распределительного вала. Когда прорезь диска проходит через паз датчика фаз, он выдает на контроллер электрический импульс, соответствующий положению поршня первого цилиндра в ВМТ в конце такта сжатия.

Наиболее характерные признаки неисправности датчика фаз:

  • во время запуска двигателя, стартер крутится 3-5 сек, потом двигатель запускается и загорается чек на панели приборов, то есть во время запуска, блок управления дожидается показания с датчика фаз;
  • повышенный расход бензина;
  • сбои режима самодиагностики при работе двигателя автомобиля;
  • снижение динамики (приемистости) двигателя автомобиля;
  • двигатель не заводится.

Датчик температуры охлаждающей жидкости

Датчик температуры охлаждающей жидкости (ДТОЖ) преобразует в электрический сигнал значение температуры охлаждающей жидкости и представляет собой термический резистор, размещенный в латунном корпусе. Сопротивление термического резистора изменяется в зависимости от его температуры – чем выше температура датчика (т. е. – чем выше температура охлаждающей жидкости в системе охлаждения), тем ниже его сопротивление.
Контроллер, принимая сигнал от датчика температуры охлаждающей жидкости, корректирует продолжительность впрыска и угол опережения зажигания.
Датчик температуры охлаждающей жидкости выполняет функцию, аналогичную системе пуска и прогрева в карбюраторном двигателе, обогащая горючую смесь при низкой температуре двигателя.
Кроме того, по сигналу ДТОЖ контроллер управляет включением и выключением электродвигателя вентилятора системы охлаждения.

Датчик температуры охлаждающей жидкости влияет на важнейшие динамические, пусковые и экономические характеристики двигателя.
Основными признаками его неисправности являются:

  • включение электродвигателя вентилятора системы охлаждения при низкой температуре и их непрерывная работа;
  • затрудненный пуск двигателя;
  • неустойчивая работа и остановка двигателя на холостом ходу;
  • детонация двигателя;
  • повышенный расход топлива.

Проверить работоспособность датчика температуры охлаждающей жидкости достаточно просто. Для этого снятый датчик помещают в емкость с водой так, чтобы он не касался стенок и дна емкости. Далее подключают к контактам датчика омметр и начинают нагревать воду, контролируя температуру по термометру.
Контрольные показания должны быть примерно следующими:

Датчик положения коленчатого вала

Датчик положения коленчатого вала (ДПКВ) преобразует угловое положение коленчатого вала двигателя в импульсный электрический сигнал, на основании которого контроллер определяет положение коленчатого вала двигателя относительно ВМТ и частоту его вращения. По результатам измерения этих параметров контроллер формирует сигналы управления форсунками и системой зажигания, а также показания тахометра.
Датчик положения коленчатого вала – единственный из всех датчиков, подающих информацию контроллеру, при отказе которого работа двигателя невозможна.
По аналогии с контактной системой зажигания этот датчик выполняет функцию прерывателя, сигнализируя контроллеру о времени подачи искры, однако он формирует, также, сигнал о начале впрыска топлива форсунками.

Существует несколько типов датчика оборотов коленчатого вала:

Магнитные датчики индуктивного типа не требуют для своего потребления особого отдельного источника питания. Для сигнала электронного блока управления индицируется напряжение в определенный момент, когда через магнитное поле проходит зуб синхронизации. Это магнитное поле образуется вокруг датчика. Кроме того, что датчик контролирует обороты коленчатого вала; он также зачастую используется как скоростной датчик.

Читайте также:  Глухой стук в двигателе при сбросе газа

Конструктивно магнитный ДПКВ представляет собой катушку с большим количеством витков провода, расположенную на магнитопроводе. На коленчатом валу двигателя (со стороны шкива) размещен зубчатый диск, при вращении которого в катушке датчика формируется импульсное напряжение, поступающее в виде информации о положении коленчатого вала к контроллеру.
По внешней окружности диска равномерно выполнены радиальные прямоугольные зубья, при этом один зуб отсутствует. Именно этот паз на диске формирует импульс, указывающий контроллеру о положении коленчатого вала.
Радиальный зазор между зубьями диска и магнитопроводом датчика составляет 1 мм.
Нормальная работа датчика может быть нарушена налипанием на магнитопровод металлических частиц, загрязнением зубчатого диска, увеличением зазора между магнитопроводом и диском и т. п.

Датчик Холла основывается на эффекте Холла, суть которого в том, что если в постоянном магнитном поле разместить металлическую пластину, то при появлении в этом же магнитном поле металлического предмета, в пластине формируется электрический импульс (ток), который может быть использован в качестве сигнала. Потенциал, возникающий между гранями пластины очень слабый, поэтому использование эффекта Холла в датчиках стало возможным лишь недавно, с появлением устройств, способных считывать и усиливать такие импульсы.
В качестве формирователя импульсов используется диск синхронизации, возмущающий магнитное поле вокруг датчика с помощью зубьев, равномерно размещенных на ободе. Датчик оборотов коленчатого вала данного типа также используется для распределения зажигания.

Оптический датчик положения коленчатого вала. В данном типе датчиков диск синхронизации выполняется с зубьями или отверстиями. Сам диск перекрывает поток света, который проходит между светоизлучателем (светодиодом) и светоприемником (фотоэлементом). Приемник перерабатывает полученный поток света в импульс напряжения, который, собственно, и передается в электронный блок управления.

Для проверки работоспособности датчика необходимо проверить наличие сигналов контроллера на любой из форсунок и катушке зажигания.
Практически это можно сделать следующим образом: отсоединить разъемы от форсунки и катушки зажигания, подключить к контактам каждого разъема ламповый пробник (необязательно одновременно, можно поочередно), и прокрутить двигатель стартером. Если нет сигналов ни на форсунке, ни на катушке зажигания, то это в большинстве случаев свидетельствует о неисправности датчика положения коленчатого вала.

Для более точного диагностирования необходимо убедиться в исправности самого контроллера, соединительной проводки и предохранителей цепи. Если же лампа хоть одного пробника будет мигать при вращении коленчатого вала, то это свидетельствует об исправности ДПКВ.
При отсутствии пробника или тестера можно вывернуть свечу зажигания и осмотреть ее. Если она влажная – это свидетельствует о том, что сигнал на форсунку поступает и впрыск происходит, т. е. можно сделать вывод об исправности датчика положения коленчатого вала.
Дальнейшие проверки можно не проводить.

Если же оказалось, что свеча сухая, то следует дополнительно проверить наличие искры. Для этого нужно обеспечить надежный контакт свечи с «массой» двигателя (например, соединить резьбовую часть свечи толстым проводом с корпусом двигателя), а на верхний контакт надеть свечной наконечник. Очень важно, чтобы контакты были надежно присоединены к свече, иначе можно испортить контроллер.
Если при работе стартера искра есть, то ДПКВ исправен. Отсутствие искры является признаком неисправности ДПКВ.

Есть еще один оригинальный способ проверки исправности датчика положения коленчатого вала. Для этого датчик снимают с кронштейна и подключают к нему колодку с проводами. Если при включенном зажигании к магнитопроводящей пластине датчика прижимать, а через некоторое время отнимать металлический (магнитопроводный) предмет (например, гаечный ключ), то будет срабатывать топливный насос, размещенный в топливном баке, что свидетельствует о работоспособности датчика.
Для того, чтобы хорошо слышать работу насоса, во время проверки датчика двери кузова нужно открыть, а заднее сиденье поднять.

Датчик положения дроссельной заслонки

Датчик положения дроссельной заслонки (ДПДЗ) преобразует значение угла открытия дроссельной заслонки в электрический сигнал.
Этот датчик работает совместно с датчиком положения педали акселератора, так как контроллер, обрабатывая сигнал от датчика педали, сравнивает его с текущим положением дроссельной заслонки.

Датчик положения дроссельной заслонки представляет собой потенциометрический датчик и связан с осью дроссельной заслонки. Снаружи его не видно, так как он расположен внутри дроссельного блока и при отказе его заменяют вместе с блоком. В этом случае, а также при замене контроллера, потребуется выполнить «обучение» контроллера закрытому положению дроссельной заслонки. Оно заключается в следующем:

  • убедитесь, что педаль акселератора полностью отпущена;
  • установите ключ зажигания в положение «ON»;
  • верните ключ зажигания в положение «OFF» и выждите не менее 10 секунд. Убедитесь по звуку, что в течение этого времени дроссельная заслонка перемещается.

Датчик детонации

Датчик детонации жестко закреплен на корпусе двигателя и преобразует величину механических шумов двигателя в электрический сигнал. Контроллер по сигналу датчика детонации производит уменьшение угла опережения зажигания, устраняя при этом детонацию.

Чувствительным элементом датчика детонации является пьезокерамический элемент. Он формирует электрический сигнал, амплитуда и частота которого соответствует амплитуде и частоте вибрации двигателя. Моменту детонации соответствует узкий диапазон сигнала определенной частоты и амплитуды, который обрабатывается контроллером, после чего он корректирует угол опережения зажигания до исчезновения детонации.

Для проверки датчика детонации следует подключить к его контактам милливольтметр (тестер) и ударить по корпусу датчика каким-либо предметом (например, рукояткой отвертки). Тестер должен зафиксировать скачок напряжения. Отказ датчика детонации контролером не парируется.
При управлении автомобилем при заведомо неисправном датчике детонации следует избегать резких увеличений нагрузки на двигатель, своевременно переходить на пониженные передачи при преодолении препятствий, не допуская возникновения звонких детонационных стуков, которые хорошо различимы на слух.

Источник

Adblock
detector