Cos fi у двигателя что это

Содержание
  1. Коэффициент мощности асинхронного двигателя — от чего зависит и как изменяется
  2. Cos φ, THD, PF и DPF в энергетике
  3. Гармоники питающего напряжения
  4. PF или DPF?
  5. cos φ , PF и DPF — как соотносятся?
  6. cos φ = DPF ≤ PF
  7. Статьи в тему производства:
  8. Некоторые мои статьи на Дзене про электродвигатели и пром.оборудование:
  9. Не забываем подписываться и ставить лайки, впереди много интересного!
  10. Cos φ и реактивная мощность: что и как?
  11. Косинус угла в электротехнике
  12. Размерности. Что в чём измеряется
  13. Минусы и плюсы наличия реактивной составляющей
  14. Коэффициент реактивной мощности Тангенс φ
  15. Отрицательный косинус
  16. Если интересны темы канала, заходите также на мой сайт — https://samelectric.ru/ и в группу ВК — https://vk.com/samelectric
  17. Статьи в тему производства:
  18. Некоторые мои статьи на Дзене про электродвигатели и пром.оборудование:
  19. Не забываем подписываться и ставить лайки, впереди много интересного!

Коэффициент мощности асинхронного двигателя — от чего зависит и как изменяется

На шильдике (информационной табличке) любого асинхронного двигателя, кроме других рабочих параметров, указан такой его параметр как косинус фи — Cosфи. Косинус фи иначе называется коэффициентом мощности асинхронного двигателя.

Почему этот параметр называется косинусом фи, и какое отношение он имеет к мощности? Все довольно просто: фи — это разность фаз между током и напряжением, и если изобразить графически активную, реактивную и полную мощности, имеющие место при работе асинхронного двигателя (трансформатора, индукционной печи и т. д.), то окажется, что отношение активной мощности к полной мощности — это и есть косинус фи — Cosфи, или другими словами — коэффициент мощности.

При номинальном напряжении питания и при номинальной нагрузке на валу асинхронного двигателя, косинус фи или коэффициент мощности как раз и будет равен тому значению, которое указано на его шильдике.

Например, для двигателя АИР71А2У2 коэффициент мощности будет равен 0,8 при нагрузке на валу 0,75 кВт. Но КПД этого двигателя равен 79%, следовательно потребляемая двигателем активная мощность при номинальной нагрузке на валу окажется больше 0,75 кВт, а именно 0,75/КПД = 0,75/0,79 = 0,95 кВт.

Тем не менее, при номинальной нагрузке на валу, параметр коэффициент мощности или Cosфи связан именно с потребляемой из сети энергией. Значит полная мощность данного двигателя окажется равна S = 0,95/Cosфи = 1,187 (КВА). Где P = 0,95 – потребляемая двигателем активная мощность.

При этом коэффициент мощности или Cosфи связан с нагрузкой на валу двигателя, поскольку при разной механической мощности на валу — разной будет и активная составляющая тока статора. Так, в режиме холостого хода, то есть когда к валу ничего не присоединено, коэффициент мощности двигателя не превысит, как правило, значения 0,2.

Если же нагрузку на валу начать увеличивать, то активная составляющая тока статора также будет расти, следовательно коэффициент мощности возрастет, и при близкой к номиналу нагрузке окажется равным примерно 0,8 — 0,9.

Если теперь нагрузку продолжить увеличивать, то есть нагружать вал сверх номинала, то ротор будет тормозиться, возрастет величина скольжения s, индуктивное сопротивление ротора станет вносить свой вклад, и коэффициент мощности начнет уменьшаться.

Если двигатель определенную часть рабочего времени работает вхолостую, то можно прибегнуть к снижению подводимого напряжения, например переключением с треугольника на звезду, тогда фазное напряжение на обмотках уменьшится в корень из 3 раз, снизится индуктивная составляющая от крутящегося вхолостую ротора, а активная составляющая в обмотках статора немного возрастет. Коэффициент мощности таким образом немного повысится.

Вообще, системы, питающиеся переменным током, такие как асинхронные двигатели, всегда обладают кроме активной еще и индуктивной и емкостной составляющими, поэтому каждые пол периода в сеть возвращается какая-то определенная часть энергии, называемая реактивной мощностью Q.

Читайте также:  Какая поршневая подходит на двигатель уд2

Этот факт вызывает у поставщиков электроэнергии проблемы: генератор вынужден поставлять в сеть полную мощность S, которая к генератору возвращается, но провода то все равно требуются соответствующего сечения под эту полную мощность, и, конечно, возникает паразитный нагрев проводов от циркулирующего туда-сюда реактивного тока. Получается, что генератор обязан поставлять полную мощность, часть которой в принципе является бесполезной.

В чисто активной форме генератор электростанции мог бы поставить потребителю гораздо больше электроэнергии, а для этого необходимо, чтобы коэффициент мощности был бы близок к единице, то есть как при чисто активной нагрузке, у которой Cosфи = 1.

Для обеспечения таких условий некоторые крупные предприятия устанавливают у себя на территории установки компенсации реактивной мощности, то есть системы из катушек и конденсаторов, которые автоматически подключаются параллельно асинхронным двигателям когда коэффициент их мощности снижается.

Получается, что реактивная энергия циркулирует между асинхронным двигателем и данной установкой, а не между асинхронным двигателем и генератором на электростанции. Так коэффициент мощности асинхронных двигателей доводят почти до 1.

Источник

Cos φ, THD, PF и DPF в энергетике

В прошлой статье мы говорили про теоретическую часть понятия «реактивная мощность». Теперь — копнём ещё глубже.

Если нужны академические знания, с ними можно ознакомиться в книгах и учебниках, которые выложены для свободного скачивания у меня на блоге, на странице Скачать .

Гармоники питающего напряжения

Кроме образования реактивной мощности, на промышленных предприятиях существует такой негативный фактор, как выработка нагрузкой гармоник напряжения питающей сети.

Гармоники – это та часть спектра питающего напряжения, которая отличается частоты промышленной сети 50 Гц. Как правило, гармоники образуются на частотах, кратных основной. Таким образом, 1-я (основная) гармоника имеет частоту 50 Гц, 2-я – 100, 3-я – 150, и так далее.

Для измерения гармоник напряжения существует формула:

  • Кu – коэффициент нелинейных искажений, или THD (Total Harmonic Distortion),
  • U(1), U(2), и так далее – напряжение соответствующей гармоники, вплоть до 40-й.

Однако, эта формула не удобна на практике, поскольку не дает представления об уровне каждой гармонике в отдельности. Поэтому для практических целей используют формулу:

  • Кu(n) – коэффициент n-й гармонической составляющей спектра напряжения,
  • U(n) – напряжение n-й гармоники,
  • U(1) – напряжение 1-й гармоники

Таким образом, при измерении мы получим детальное распределение гармоник в спектре питающего напряжения, что позволит провести детальный анализ полученной информации и сделать правильные выводы.

Есть ещё гармоники тока, но там всё гораздо хуже…

На основе увеличения гармоник тока построен прибор для обмана счетчика . Кстати, там Автор прибора довольно убедительно доказал пользу своего изобретения)

PF или DPF?

Здесь надо сделать оговорку. Всё, что я говорил выше про косинус – относится к линейной нагрузке. Это означает, что напряжение и ток, хоть и гуляют по фазе, имеют форму синуса.

Но в реальном мире вся нагрузка не только не активная, но и не линейная. Значит, ток через неё имеет хоть и периодическую, но далеко не синусоидальную форму. Искаженная синусоида означает, что кроме первой гармоники имеются и другие, вплоть до бесконечности.

Вот как обстоят иногда дела:

Обычно, когда нагрузка симметричная (трехфазные потребители), за счёт принципов работы все гармоники, кратные 2 и 3, почти отсутствуют. В итоге остаются в основном 5, 7, 11, 13 гармоники, имеющие частоты соответственно частоты 250, 350, 550, 650 Гц.

cos φ , PF и DPF — как соотносятся?

Та теория, что я расписал выше – для идеальных условий (без нелинейных искажений), которых в реале не бывает. Либо, если пренебречь высшими гармониками тока, и взять только первую (50 Гц), что обычно и происходит в жизни.

Читайте также:  Контроль работы двигателя ваз инжектор

И если подходить к терминологии строго, то cos φ и PF (Power Factor) – это не одно и то же. PF учитывает также все гармоники напряжения и тока. И с учетом нелинейности реальный PF будет меньше.

Для учета коэффициента мощности в приборе HIOKI есть параметр DPF (Displacement Power Factor, смещённый коэффициент мощности), который учитывает только первую гармонику и равен cos φ.

В итоге можно сказать, что справедливо выражение:

cos φ = DPF ≤ PF

На этом всё. Если есть желание что-то добавить, или поправить меня – как всегда, рад вашим комментариям!

Статьи в тему производства:

Некоторые мои статьи на Дзене про электродвигатели и пром.оборудование:

  • Как узнать обороты асинхронника по обмотке
  • Как затормозить электродвигатель
  • Выбор ПЧ насоса
  • Как правильно охлаждать силовой шкаф
  • Как измерить пусковой ток электродвигателя
  • Как определить направление вращения ротора
  • Как по фото узнать скорость вращения двигателя?
  • Про температуру двигателя
  • Теплушка: как защитить электродвигатель
  • Контактор vs Пускатель : разница принципиальная!
  • Пример применения софтстартера
  • Как мы спалили софтстартер
  • Как мы спалили вводной автомат
  • Как мы спалили частотник: КЗ на входе
  • Оптический датчик: безопасность превыше всего!
  • Зачем нужен линейный контактор
  • Какой двигатель можно подключать в “звезду-треугольник”, а какой нет?
  • «Звезда/Треугольник»: как работает схема
  • «Звезда/Треугольник»: примеры реализации схемы
  • Что будет, если вместо «Треугольника» двигатель включить в «Звезду»?(Не повторять! Приготовьте огнетушитель!)
  • Контрольные цепи в промышленном оборудовании: принципы построения
  • Пошлый турецкий станок

Не забываем подписываться и ставить лайки, впереди много интересного!

Обращение к хейтерам:
за оскорбление Автора и Читателей канала — отправляю в баню.

Источник

Cos φ и реактивная мощность: что и как?

В этой статье хочу поделиться своими знаниями по таким понятиям, как коэффициент мощности (известный в народе как cos φ).

Статья не претендует на википедийность!

Если нужны академические знания, с ними можно ознакомиться в книгах и учебниках, которые выложены для свободного скачивания у меня на блоге, на странице Скачать .

Косинус угла в электротехнике

Итак, что такое косинус в электротехнике? Дело в том, что есть такое явление, как сдвиг фаз между током и напряжением. Он происходит по разным причинам, и иногда важно знать о его величине. Сдвиг фаз можно измерить в градусах, от 0 до 360.

На практике степень реактивности (без указания индуктивного либо емкостного характера) выражают не в градусах, а в функции косинуса, и называют коэффициентом мощности:

  • P – активная мощность, которая тратится на совершение полезной работы,
  • S – полная мощность.

Полная мощность является геометрической суммой активной Р и реактивной Q мощностей, поэтому формулу коэффициента мощности можно записать в следующем виде:

Повторяю: Кто хочет, почитайте про cos φ в Википедии, а я рассказываю своими словами.

В иностранной литературе cos φ называют PF (Power Factor). Фактически, это коэффициент, который говорит о сдвиге сигнала тока по отношению к сигналу напряжения.

На самом деле, всё не так просто, подробности ниже.

Легендарный Алекс Жук очень толково рассказал, что такое реактивная мощность, и всё по этой теме:

В видео подробно и доступно изложена вся теория по теме.

Размерности. Что в чём измеряется

Реактивная мощность Q ⇒ ВАР (Вольт · Ампер Реактивный),

Полная мощность S ⇒ ВА (Вольт · Ампер).

Кстати, в стабилизаторах и генераторах мощность указана в ВА . Так больше. Маркетологи знают лучше.
Также маркетологи знают, что на потребителях (например, на двигателях) мощность лучше указывать в кВт . Так меньше.

Минусы и плюсы наличия реактивной составляющей

При питании нагрузки, имеющей только активный характер, сдвиг фаз между током и напряжений равен нулю. Этот случай можно назвать идеальным, при нем можно питающие сети используются полностью, поскольку нет потерь на бесполезную реактивную составляющую.

Реактивная составляющая не так бесполезна. Она формирует электромагнитное поле, нужное для адекватной работы реактивной нагрузки.

В реальной жизни нагрузка, как правило, имеет индуктивный характер (ток отстает от напряжения), и является активно-реактивной. Поэтому всегда, когда говорят о сдвиге фаз и о косинусе, имеют ввиду индуктивную нагрузку.

Читайте также:  С каким объемом двигателя выбрать машину

Основными источниками реактивной составляющей электроэнергии являются трансформаторы и асинхронные электродвигатели.

Чисто реактивная (и чисто активная) нагрузка бывает только в учебнике. Реально за счет потерь всегда присутствует и активная составляющая тоже.

Реактивная составляющая мощности питания является негативным фактором, поскольку:

  • Возникают дополнительные потери в линиях передачи электроэнергии,
  • Снижается пропускная способность линий электропередачи,
  • Происходит падение напряжения на линиях передачи из-за увеличения реактивной составляющей тока питающей сети,
  • Происходит дополнительный нагрев и износ систем распределения и трансформации электроэнергии,
  • Возможно появление резонансных эффектов на частотах гармоник, что может вызвать перегрев питающих сетей.

По приведенным причинам необходимо понижать долю реактивной мощности в сети (повышать косинус) – это выгодно и энергоснабжающим организациям, и потребителям с распределенными сетями.

Пример: Для передачи определенной мощности нужен ток 100 А при cos φ = 1. Однако, при cos φ = 0,6 для обеспечения той же мощности нужно будет передать ток 166 А! Соответственно, нужно думать о повышении мощности питающей сети и увеличении сечения проводов…

Коэффициент реактивной мощности Тангенс φ

Часто более удобным является коэффициент реактивной мощности tg φ, который показывает отношение реактивной мощности к активной. Понятно, что при tg φ = 0 достигается идеал cos φ = 1.

Отрицательный косинус

Из школьного курса геометрии известно, что cos (φ) = cos (-φ) , то есть косинус любого угла будет положительной величиной.

Речь идёт, конечно, о диапазоне сдвига фаз, который физически возможен в энергетике.

Но как же отличить индуктивную нагрузку от емкостной? Всё просто – электрики всех стран условились, что при емкостной нагрузке перед знаком косинуса ставится минус!

В практике пользования прибором анализа напряжения HIOKI у меня были случаи, когда значение косинуса было отрицательным. В последствии выяснилось, что была неправильно включена компенсаторная установка и произошла перекомпенсация. То есть cos φ

В следующей статье я расскажу не только про косинус, но и про синус применительно к энергетике. А также, как с этим связаны гармоники питающего напряжения

Доходчиво ли я изложил? Делитесь в комментариях, будет интересно почитать!

Если интересны темы канала, заходите также на мой сайт — https://samelectric.ru/ и в группу ВК — https://vk.com/samelectric

Статьи в тему производства:

Некоторые мои статьи на Дзене про электродвигатели и пром.оборудование:

  • Как узнать обороты асинхронника по обмотке
  • Как затормозить электродвигатель
  • Выбор ПЧ насоса
  • Как правильно охлаждать силовой шкаф
  • Как измерить пусковой ток электродвигателя
  • Как определить направление вращения ротора
  • Как по фото узнать скорость вращения двигателя?
  • Про температуру двигателя
  • Теплушка: как защитить электродвигатель
  • Контактор vs Пускатель : разница принципиальная!
  • Пример применения софтстартера
  • Как мы спалили софтстартер
  • Как мы спалили вводной автомат
  • Как мы спалили частотник: КЗ на входе
  • Оптический датчик: безопасность превыше всего!
  • Зачем нужен линейный контактор
  • Какой двигатель можно подключать в “звезду-треугольник”, а какой нет?
  • «Звезда/Треугольник»: как работает схема
  • «Звезда/Треугольник»: примеры реализации схемы
  • Что будет, если вместо «Треугольника» двигатель включить в «Звезду»?(Не повторять! Приготовьте огнетушитель!)
  • Контрольные цепи в промышленном оборудовании: принципы построения
  • Пошлый турецкий станок

Не забываем подписываться и ставить лайки, впереди много интересного!

Обращение к хейтерам:
за оскорбление Автора и Читателей канала — отправляю в баню.

Источник

Adblock
detector