Что такое повышенное скольжение в двигателе

Электродвигатели с повышенным скольжением

Производственно-коммерческий холдинг: Северо-Западное Электромеханическое Объединение (ЗАО «СЗЭМО») также занимается активными поставками 3-хфазных асинхронных электродвигателей с повышенным скольжением.

  • ОАО «ELDIN», г. Ярославль
  • ОАО «ВЭМЗ», г. Владимир
  • ОАО «Могилевский завод «Электродвигатель»

Эти двигатели специально предназначены для привода механизмов с высокой инерционностью и ступенчатой регулировкой частоты вращения в условиях работы в повторно-кратковременном режиме, а также для привода механизмов с неравномерной пульсирующей (ударной) нагрузкой и механизмов, подверженных частым пускам и реверсам.

Скольжение при номинальной нагрузке у двигателей данного типа выше, чем у базовых модификаций, а «критическое скольжение» составляет порядка 40%, что достигается за счет повышения сопротивления обмотки ротора.

Двигатели с повышенным скольжением бозначаются так же, как и двигатели основного исполнения соответствующего типоразмера с добавлением буквы «С» после обозначения серии. Технические данные электродвигателей с повышенным скольжением приведены в технических условиях конкретного типа стандартных электродвигателей и относятся к повторно-кратковременному режиму работы S3 с продолжительностью включения ПВ 40%.

Габаритные (присоединительные) размеры двигателей с повышенным скольжением соответствуют аналогичным размерам общепромышленных двигателей.

В данном разделе представлены электродвигатели российских производителей и производителей стран СНГ.

Источник

Скольжение асинхронного двигателя

В результате взаимодействия магнитного поля с токами в роторе асинхронного двигателя создается вращающий электромагнитный момент, стремящийся уравнять скорость вращения магнитного поля статора и ротора.

Разность скоростей вращения магнитного поля статора и ротора асинхронного двигателя характеризуется величиной скольжения s = (n 1 — n 2 ) / n 1, где n 1 — синхронная скорость вращения поля, об/мин, n2 — скорость вращения ротора асинхронного двигателя, об/мин. При работе с номинальной нагрузкой скольжение обычно мало, так для электродвигателя, например, с n 1 = 1500 об/мин, n2 = 1 460 об/мин, скольжение равно: s = ((1500 — 1460) / 1500) х 100 = 2,7%

Асинхронный двигатель не может достичь синхронной скорости вращения даже три отсоединенном механизме, так как при ней проводники ротора не будут пересекаться магнитным полем, в них не будет наводиться ЭДС и не будет тока. Асинхронный момент при s = 0 будет равен нулю.

В начальный момент пуска в обмотках ротора протекает ток с частотой сети. По мере ускорения ротора частота тока в нем будет определяться скольжением асинхронного двигателя : f2 = s х f1, где f1 — частота тока, подводимого к статору.

Сопротивление ротора зависит от частоты тока в нем, причем чем больше частота, тем больше его индуктивное сопротивление. С увеличением индуктивного сопротивления ротора увеличивается сдвиг фаз между напряжением и током в обмотках статора.

При пуске асинхронных двигателей коэффициент мощности поэтому значительно ниже, чем при нормальной работе. Величина тока определяется эквивалентным значением сопротивления электродвигателя и приложенным напряжением.

Величина эквивалентного сопротивления асинхронного двигателя с изменением скольжения изменяется по сложному закону. При уменьшении скольжения в пределах 1 — 0,15 сопротивление увеличивается, как правило, не более чем в 1,5 раза, в пределах от 0,15 до s н ом в 5-7 раз по отношению к начальному значению при пуске.

Ток по величине изменяется обратно пропорционально изменению эквивалентного сопротивления Таким образом, при пуске до скольжения порядка 0,15 ток опадает незначительно, а в дальнейшем быстро уменьшается.

Читайте также:  Почему громко работает двигатель калины

Момент вращения может быть также определен по электромагнитной мощности на валу как отношение этой мощности к угловой скорости ротора. Величина момента пропорциональна квадрату напряжения и обратно пропорциональная квадрату частоты.

Характерными значениями момента в зависимости от скольжения (или скорости) являются начальное значение момента (когда электродвигатель еще неподвижен), максимальное значение момента (и соответствующее ему сколь жение, называемое критическим) и минимальное значение момента в пределе скоростей от неподвижного состояния до номинальной .

З начения момента для номинального напряжения приводятся в каталогах для электрических машин. Знание минимального момента необходимо при расчете допустимости пуска или самозапуска механизма с полной нагрузкой механизма. Поэтому его значение для конкретных расчетов должно быть либо определено, либо получено от завода-поставщика.

Величина максимального значения момента определяется индуктивным сопротивлением рассеяния статора и ротора и не зависит от величины сопротивления ротора.

Критическое скольжение определяется отношением сопротивления ротора к эквивалентному сопротивлению (обусловлено активным сопротивлением статора и индуктивным сопротивлением рассеяния статора и ротора).

Увеличение только активного сопротивления ротора сопровождается увеличением критического скольжения и перемещением максимума момента в область более высоких скольжений (меньшей скорости вращения). Таким путем может быть достигнуто изменение характеристик моментов.

Изменение скольжения возможно увеличением сопротивления цени ротора или потока. Первый вариант осуществим только для асинхронных двигателей с фазным ротором (от S = 1 до S = Sном ) , но не экономичен. Второй вариант осуществим при изменении питающего напряжения, но только в сторону уменьшения. Диапазон регулирования мал, так как S возрастает, но одновременно уменьшается перегрузочная способность асинхронного двигателя. По экономичности оба варианта, примерно, равноценны.

В асинхронных двига т елях с фазным ротором изменение момента при различных скольжениях осуществляется с помощью сопротивления, вводимого в цепь обмотки ротора. В асинхронных двигателях с короткозамкнутым ротором изменение момента может быть достигнуто за счет применения двигателей с переменными параметрами или с помощью частотных преобразователей .

Источник

Скольжение электродвигателя

В процессе взаимодействия магнитного поля и тока в роторе асинхронного электродвигателя создается вращающий момент, который позволяет уровнять скорость статора, ротора и вращения электромагнитного поля. Величина скольжения электродвигателя характеризуется скоростью вращения ротора, статора и магнитного поля.

От чего зависит величина скольжения электродвигателя

  • Как правило, скольжение относительно невелико при работе электродвигателя с номинальной нагрузкой. Например, при работе электромотора 1500 оборотов в минуту скольжение равно 2,7%.
  • Асинхронные электродвигатели не могут достичь синхронной скорости даже, если отсоединить механизм. Проводники ротора никогда не будут пересекаться с магнитным полем, в них не будет ЭДС, соответственно не будет и тока. При этом асинхронный момент будет равен нулю.
  • В момент пуска в обмотку ротора поступает ток, соответствующий частоте сети. По мере ускорения частота тока будет определена скольжением. При этом сопротивление ротора будет зависеть от частоты тока. Индуктивное сопротивление будет возрастать по мере увеличения частоты тока.
  • Величины эквивалентного сопротивления изменяются в соответствии с законами физики. Если скольжение электродвигателя уменьшается, сопротивление соответственно увеличивается.
  • При пусковом моменте до развития скольжения в пределах 0,15 сила сопротивления уменьшается незначительно. При дальнейшей работе наоборот – быстро уменьшается. Величина момента вращения определяется соответствующей величиной магнитного потока, поступающего тока и сдвигом между параметрами ЭДС, тока в роторе. Зависимость момента скольжения и напряжения с частотой устанавливается в ходе проведения исследования технических характеристик производителями электромоторов.

Определение величины скольжения электродвигателя

Предопределяющим моментом в прямой зависимости от скольжения является начальное значение того момента, когда электродвигатель остается еще в неподвижном состоянии. Максимальное значение скольжения называется критическим.

Читайте также:  Как определить что умерла подушка двигателя

Конкретные расчеты производят специалисты завода-изготовителя, и они указаны в соответствующих технических характеристиках, прилагаемых к электродвигателю при покупке. При увеличении активного сопротивления только ротора увеличивается значение критического скольжения и уменьшается скорость вращения вала. Изменить данные параметры можно путем использования дополнительного сопротивления, которое вводится в цепь обмотки ротора.

Источник

Характеристики асинхронного электродвигателя, крутящий момент скольжения.

Крутящий момент скольжения, характеристики трёхфазного асинхронного электродвигателя

Кривая крутящего момента скольжения для асинхронного двигателя даёт информацию об изменении крутящего момента со скольжением. Скольжение определяется как отношение разности синхронной скорости и фактической скорости ротора к синхронной скорости устройства.

Изменение скольжения может быть достигнуто вместе с изменением скорости, когда скорость меняется, будет меняться и скольжение, и крутящий момент, соответствующий данной скорости, также будет изменяться. Кривая может быть описана в трёх режимах работы:

Моторный режим

Идёт подача в область статора, и двигатель всегда вращается медленнее синхронной скорости. Крутящий момент асинхронного двигателя меняется от нуля до крутящего момента полной нагрузки, так же как и скольжение.

Скольжение претерпевает изменения от нуля до единицы. При отсутствии нагрузки скольжение составляет ноль, а при состоянии покоя оно равно единице. Кривая показывает, что крутящий момент прямо пропорционален скольжению. Это означает, что чем больше скольжение, тем больше производимый крутящий момент, и наоборот. Линейные взаимоотношения сильно упрощают расчёт параметра двигателя.

Генерирующий режим

Асинхронный двигатель работает быстрее синхронной скорости, и он должен управляться основным движителем. Обмотка статора подсоединена к трёхфазной подаче, за счёт которой поступает электрическая энергия. В действительности, в данном случае, скольжение и крутящий момент отрицательны, так что двигатель получает механическую энергию и производит электроэнергию.

Асинхронный двигатель не часто используется как электрогенератор, поскольку ему нужна для такой работы реактивная энергия.

Реактивную энергию в таком случае пришлось бы подавать извне, и если бы двигатель работал медленнее синхронной скорости по какой-либо причине, он бы скорее потреблял электроэнергию, чем бы производил её. Так что асинхронные электрогенераторы стараются не использовать.

Разрывающий режим

Два провода или полярность поставляемого напряжения меняются, так что двигатель начинает вращаться в обратном направлении, в результате чего электродвигатель останавливается. Этот метод разрыва известен как торможение противовключением.

Метод применяют, когда нужно остановить двигатель в течение очень маленького промежутка времени. Кинетическая энергия, накопленная во вращающейся нагрузке, рассеивается в качестве тепла. Также двигатель всё ещё получает энергию от статора, которая также рассеивается в виде тепла.

В результате двигатель производит много тепловой энергии. Для этого статор отключается от подачи, до того как двигатель войдёт в разрывающий режим. Если нагрузка, которой управляет двигатель, ускорит двигатель в том же направлении, что и направление его вращения, скорость двигателя может возрасти до уровня выше синхронной скорости.

В этом случае он ведет себя как асинхронный генератор, который поставляет электроэнергию в сеть электроснабжения, которая стремится замедлить двигатель до синхронной скорости, в этом случае двигатель останавливается. Этот тип разрывающего принципа зовётся динамическим или регенерирующим разрыванием.

Крутящий момент скольжения, характеристики однофазного асинхронного электродвигателя

Из рисунка видно, что когда скольжение едино, переднее и заднее поле производят одинаковый крутящий момент, но его направление противоположно друг другу, так что производимый крутящий момент равен нулю, поэтому двигатель не может стартовать. Отсюда можно сделать вывод, что эти двигатели не запускаются сами, в отличие от трёхфазных.

Читайте также:  При нагреве дизельного двигателя падают обороты

Должны быть средства, чтобы обеспечить стартовый крутящий момент. За счёт некоторых средств можно достичь увеличения передней скорости устройства, в силу чего переднее скольжение будет уменьшаться, передний крутящий момент будет усиливаться, и обратный крутящий момент будет уменьшаться. В результате двигатель стартует.

Отсюда можно сделать вывод, что для старта однофазного двигателя, должна быть разница крутящего момента между передним и задним полем. Если крутящий момент переднего поля больше, чем заднего поля, то двигатель вращается вперед, или против часовой стрелки. Если крутящий момент заднего поля больше, то электродвигатель крутится назад, или по часовой стрелке.

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на карту сайта Электронщик , буду рад если вы найдете на моем сайте еще что-нибудь полезное. Делитесь информацией в соцсетях, ставьте лайки, если вам понравилось — это поможет развитию канала

Источник

Большая Энциклопедия Нефти и Газа

Повышенное скольжение

Повышенное скольжение в зацеплении и неблагоприятные условия смазки в червячных передачах являются причиной пониженного КПД, повышенного изнашивания зубьев и склонности к заеданию. [1]

Повышенное скольжение этих двигателей не является недостатком для указанного режима работы. Обычно пуск двигателей производится непосредственным включением на сеть. [3]

Ступень повышенного скольжения СПС вводится при значительном увеличении нагрузки двигателя для использования энергии, запасенной в маховых массах привода, что предохраняет двигатель от перегрузки. Управление этой ступенью осуществляется в функции тока при помощи специального реле скольжения PC ( РЭ-190), имеющего трехфазную, магнитную систему для устранения вибрации при низкой частоте токов ротора, когда короткозамкнутые витки на магнитопроводе реле непригодны. Для повышения точности работы и получения высокого коэффициента возврата реле PC выполняется с малым ходом якоря. [5]

При повышенном скольжении ток статора может значительно превышать номинальное значение, что может привести к перегреву обмотки статора. [6]

О повышенном скольжении ремней свидетельствует сильный нагрев шкивов. [7]

При повышенном скольжении ток статора может значительно превышать номинальное значение, что может привести к перегреву обмотки статора. [8]

Асинхронные двигатели повышенного скольжения с коротко-замкнутым ротором занимают особое место в области электрического привода. [9]

Асинхронный двигатель повышенного скольжения встречается на практике в двух конструктивных исполнениях: 1) с коротко-замкнутым ротором и 2) с контактными кольцами и с добавочным сопротивлением в цепи ротора; в первом исполнении двигатель и аппаратура управления будут более дешевыми, чем во втором. Кроме того, первое исполнение обладает большей эксплуатационной надежностью. [10]

У двигателей повышенного скольжения она имеет примерно такой же вид. На низких скоростях вращения ( точка D) требуется отключить двигатель от сети для предупреждения реверса. [12]

Двигатели с повышенным скольжением предназначены для привода рабочих механизмов с переменным режимом нагрузки, требующих во время работы больших кратковременных вращающихся моментов. Для создания таких моментов двигатель должен иметь большое скольжение, а для более равномерной его загрузки рабочий механизм обычно снабжают маховиком. [13]

Электродвигатели с повышенным скольжением применяют для привода механизмов, требующих повышенного пускового момента. [14]

Электродвигатели с повышенным скольжением служат для привода механизмов с пульсирующей нагрузкой ( например, поршневые компрессоры малой мощности) и с ударной нагрузкой ( молоты, прессы), а также для привода подъемно-транспортных механизмов. [15]

Источник

Adblock
detector