Что такое момент на валу двигателя при скольжении

Характеристики асинхронного электродвигателя, крутящий момент скольжения.

Крутящий момент скольжения, характеристики трёхфазного асинхронного электродвигателя

Кривая крутящего момента скольжения для асинхронного двигателя даёт информацию об изменении крутящего момента со скольжением. Скольжение определяется как отношение разности синхронной скорости и фактической скорости ротора к синхронной скорости устройства.

Изменение скольжения может быть достигнуто вместе с изменением скорости, когда скорость меняется, будет меняться и скольжение, и крутящий момент, соответствующий данной скорости, также будет изменяться. Кривая может быть описана в трёх режимах работы:

Моторный режим

Идёт подача в область статора, и двигатель всегда вращается медленнее синхронной скорости. Крутящий момент асинхронного двигателя меняется от нуля до крутящего момента полной нагрузки, так же как и скольжение.

Скольжение претерпевает изменения от нуля до единицы. При отсутствии нагрузки скольжение составляет ноль, а при состоянии покоя оно равно единице. Кривая показывает, что крутящий момент прямо пропорционален скольжению. Это означает, что чем больше скольжение, тем больше производимый крутящий момент, и наоборот. Линейные взаимоотношения сильно упрощают расчёт параметра двигателя.

Генерирующий режим

Асинхронный двигатель работает быстрее синхронной скорости, и он должен управляться основным движителем. Обмотка статора подсоединена к трёхфазной подаче, за счёт которой поступает электрическая энергия. В действительности, в данном случае, скольжение и крутящий момент отрицательны, так что двигатель получает механическую энергию и производит электроэнергию.

Асинхронный двигатель не часто используется как электрогенератор, поскольку ему нужна для такой работы реактивная энергия.

Реактивную энергию в таком случае пришлось бы подавать извне, и если бы двигатель работал медленнее синхронной скорости по какой-либо причине, он бы скорее потреблял электроэнергию, чем бы производил её. Так что асинхронные электрогенераторы стараются не использовать.

Разрывающий режим

Два провода или полярность поставляемого напряжения меняются, так что двигатель начинает вращаться в обратном направлении, в результате чего электродвигатель останавливается. Этот метод разрыва известен как торможение противовключением.

Метод применяют, когда нужно остановить двигатель в течение очень маленького промежутка времени. Кинетическая энергия, накопленная во вращающейся нагрузке, рассеивается в качестве тепла. Также двигатель всё ещё получает энергию от статора, которая также рассеивается в виде тепла.

В результате двигатель производит много тепловой энергии. Для этого статор отключается от подачи, до того как двигатель войдёт в разрывающий режим. Если нагрузка, которой управляет двигатель, ускорит двигатель в том же направлении, что и направление его вращения, скорость двигателя может возрасти до уровня выше синхронной скорости.

В этом случае он ведет себя как асинхронный генератор, который поставляет электроэнергию в сеть электроснабжения, которая стремится замедлить двигатель до синхронной скорости, в этом случае двигатель останавливается. Этот тип разрывающего принципа зовётся динамическим или регенерирующим разрыванием.

Крутящий момент скольжения, характеристики однофазного асинхронного электродвигателя

Из рисунка видно, что когда скольжение едино, переднее и заднее поле производят одинаковый крутящий момент, но его направление противоположно друг другу, так что производимый крутящий момент равен нулю, поэтому двигатель не может стартовать. Отсюда можно сделать вывод, что эти двигатели не запускаются сами, в отличие от трёхфазных.

Должны быть средства, чтобы обеспечить стартовый крутящий момент. За счёт некоторых средств можно достичь увеличения передней скорости устройства, в силу чего переднее скольжение будет уменьшаться, передний крутящий момент будет усиливаться, и обратный крутящий момент будет уменьшаться. В результате двигатель стартует.

Отсюда можно сделать вывод, что для старта однофазного двигателя, должна быть разница крутящего момента между передним и задним полем. Если крутящий момент переднего поля больше, чем заднего поля, то двигатель вращается вперед, или против часовой стрелки. Если крутящий момент заднего поля больше, то электродвигатель крутится назад, или по часовой стрелке.

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на карту сайта Электронщик , буду рад если вы найдете на моем сайте еще что-нибудь полезное. Делитесь информацией в соцсетях, ставьте лайки, если вам понравилось — это поможет развитию канала

Источник

Что такое крутящий момент и почему он важен (объяснение для неспециалиста)

Крутящий момент часто описывается как сила с которой вращается двигатель. Представьте себе крутящий момент (в контексте двигателя) как объем работы, которую двигатель производит за радиан (обороты). На самом деле крутящий момент измеряется в ньютон-метрах (Нм) -> сила * движение = энергия (работа).

Читайте также:  Двигатель работает и глохнет ваз классика

Величина крутящего момента, создаваемая двигателем внутреннего сгорания, сильно варьируется в зависимости от текущей скорости вращения двигателя. Вот почему, как правило, технические характеристики транспортных средств дают (пиковый) крутящий момент коленчатого вала, а также обороты, при которых двигатель его достигает: 200Нм при 3000 оборотов/мин.

Простой пример для понимания крутящего момента — сравнение с фермером, работающим на поле:
1. Число оборотов двигателя — это количество ударов мотыги, которые фермер может сделать за минуту.
2. Крутящий момент двигателя — с какой мощностью удар фермера падает на землю.
Мощность двигателя — это комбинация и того и другого и представляет, сколько полей фермер может подготовить за определенное время.

Фермер может использовать очень маленькую мотыгу (низкий крутящий момент) и быть очень быстрым (высокие обороты), или наносить несколько (низкие обороты) очень мощных ударов (высокий крутящий момент). Количество подготовленных полей может быть одинаковым даже при очень разных значениях «крутящего момента».

В случае двигателя величина крутящего момента сама по себе совершенно бессмысленна, поскольку крутящий момент может быть умножен на передачу, например, описанный выше двигатель может быть приспособлен с отношением 1: 2 для получения 400Нм при 1500 оборотов/ мин. Делая меньше оборотов, двигатель сможет производить больше работы (энергии) за оборот. Но обратите внимание, что вся энергия, произведенная за тот же промежуток времени, постоянна.

Мощностью называется работа силы, совершаемая в единицу времени. Чтобы получить мощность двигателя при определенных оборотах, вы умножаете крутящий момент на число оборотов (рад/с):
200Нм * 3000 оборотов/ мин = 62.84 кВт
400Нм * 1500 оборотов/ мин = 62.84 кВт

Можете сами поэкспериментировать с расчетами тут

Вы видите, что мощность двигателей равна, поэтому оба могут выполнять одну и ту же работу за одно и то же время, даже если один из двигателей обладает в два раза большим крутящим моментом. Оба могут ускорять объект определенной массы в одно за одно и то же время. Вот почему обычно ЛС (лошадиные силы) / кВт являются более значимым способом описания производительности двигателя. кВт — это 1000 Дж/с.

КРУТЯЩИЙ МОМЕНТ = энергия на единицу вращения

МОЩНОСТЬ = энергия на единицу времени

Так почему крутящий момент важен? Он как раз и не важен:
Рассмотрим типичную машину (1500 кг), разгоняющуюся от 0 до 100 км/ч (28 м/с).

Рассчитаем количество кинетической энергии, необходимой для ускорения машины, по знаменитой формуле 1/2𝑚𝑉 ^2 (V квадрат).

0,5 ∗ 1500 кг ∗ (100 км/ч)^2 = 600000 Джоулей

Рассмотрим оба двигателя, которые мы упоминали выше. У них 62 кВт, но сильно отличающиеся значения крутящего момента.

Оба двигателя разгонят автомобиль с 0 до 100 км / ч за:

600 кДж / 62 кВт = 600000 Дж / 62000 Дж/сек. = 10 секунд
Теоретически…

На практике это будет несколько иначе, потому что, когда вы ведете автомобиль, вы не можете поддерживать двигатель на желаемой скорости, вам постоянно нужно переключать передачи, и при ускорении обороты двигателя будут расти. Это означает, что для получения пикового ускорения вам нужно будет поддерживать двигатель около точки пиковой мощности, которая обычно отличается от точки пикового крутящего момента.
Так крутящий момент имеет значение? Нет. В какой-то степени важна точка максимального крутящего момента (обороты / мин.) по сравнению с общим доступным диапазоном оборотов. Например, сравните эти двигатели:
— Большой турбодизель с максимальным крутящим моментом при
1250 об. / мин и 200 л.с. при 4000 об. / мин
— Мотоциклетный атмосферный газовый двигатель объемом 900 куб. см с максимальным крутящим моментом при 11000 об / мин и 200 л.с. при 13000 об. / мин

Второй двигатель будет иметь менее трети крутящего момента первого, но оба будут способны разгонять одну и ту же массу с одинаковой скоростью, тянуть одинаковый вес в гору, если он будет использоваться в точке максимальной мощности. Но первый двигатель будет иметь приличную мощность от 1500 об. / мин до 4000 об. / мин, то есть от 30% до 100% от доступного диапазона. Второй двигатель будет иметь приличную мощность только от 60% до 100% диапазона оборотов.

Первый двигатель тяжелый, но эффективный, он требует большой трансмиссии и тяжелого сцепления. Он идеально подходит для больших грузовиков или небольших судов, где важна эффективность и вес не имеет большого значения. Второй двигатель неэффективный, но легкий, он может быть полезен для мотоциклов, небольших гоночных автомобилей или даже для небольших городских автомобилей.

Читайте также:  Почему дизельные двигатели турбированные

Но это не имеет ничего общего с крутящим моментом само по себе, просто двигатели с низким крутящим моментом, как правило, более эффективны, чем быстрые двигатели с низким крутящим моментом.

Важность трансмиссии и передаточных чисел:

При фиксированном передаточном числе и фиксированном соединении между коленчатым валом и шинами, крутящий момент колеса и, следовательно, ускорение будут пропорциональны крутящему моменту двигателя. В этом состоянии пиковое ускорение наступает, когда двигатель имеет пиковое значение крутящего момента.

Это может сбивать с толку, потому что то, что я сказал что максимальное ускорение наступает в точке максимальной мощности, а не в точке максимального крутящего момента.

Путаница возникает из-за того, что энергия, необходимая для ускорения транспортного средства на фиксированную величину, увеличивается со скоростью.

Запомните формулу:
𝐾𝑒 = 1 / 2𝑚𝑉 ^2
термин V ^ 2 означает, что с увеличением скорости вам нужно все больше и больше энергии для ускорения.

Так почему это важно?

Рассмотрим ситуацию с фиксированным передаточным числом 1: 1 и ускорением автомобиля во всем диапазоне оборотов.

В точке максимального крутящего момента (скажем, 1000 об. / мин.) транспортное средство будет подвергаться максимальному ускорению и будет двигаться с определенной скоростью V1.

В точке максимальной мощности (скажем, 3000 об. / мин. — 30 км. / ч.) автомобиль будет подвергаться меньшему ускорению, но его скорость V2 будет намного выше.

Поскольку V2 > V1, мощность, необходимая для ускорения транспортного средства на определенную величину в V2, будет выше. Даже если при V2 ускорение будет ниже, увеличение кинетической энергии будет выше из-за более высокой мощности при 3000 об. / мин.

Для получения фиксированной величины ускорения при V1 = 1000 об. / мин., вам нужна мощность, пропорциональная: (игнорируем здесь единицы измерения)

На V2 = 30 000 об. / мин. вам нужно:
30 ^ 2 = 900

Таким образом, чтобы получить такое же ускорение при 30 км. / ч., вам нужно в 9 раз больше энергии, чем при 10 км. / ч.!

Теперь представьте другой сценарий, в котором на V1 у вас будет более короткая передача, поэтому обороты двигателя будут 3000, даже если вы на скорости 1000 об. / мин.. В этом состоянии двигатель будет работать в точке максимальной мощности, крутящий момент на коленчатом валу будет ниже, но крутящий момент на колесе будет выше, поскольку теперь у вас есть отношение 3: 1, а крутящий момент двигателя умножается на 3. В этом состоянии вы имеете максимально возможное ускорение, потому что двигатель передает кинетическую энергию на транспортное средство с максимально возможной скоростью.

Уф, кажется закончил ))
Много текста, я понимаю. Но, как говорится, не море топит, а лужа.

Источник

Вращающий момент асинхронного двигателя

§ 93. ВРАЩАЮЩИЙ МОМЕНТ АСИНХРОННОГО ДВИГАТЕЛЯ

Вращающий момент асинхронного двигателя создается при взаимодействии вращающегося магнитного поля статора с токами в проводниках обмотки ротора. Поэтому вращающий момент зави­сит как от магнитного потока статора Фт, так и от силы тока в обмотке ротора I2. Однако в создании вращающего момента уча­ствует только активная мощность, потребляемая машиной из сети. Вследствие этого вращающий момент зависит не от силы тока в обмотке ротора I2, а только от его активной составляющей, т. е. I2 cos ψ2, где ψ2 — фазный угол между э. д. с. и током в обмотке ротора.

Таким образом, вращающий момент асинхронного двигателя определяется следующим выражением:

где С — конструктивная постоянная машины, зависящая от числа ее полюсов и фаз, числа витков обмотки статора, конструк­тивного выполнения обмотки и принятой системы единиц. При условии постоянства приложенного напряжения магнит­ный поток остается также почти постоянным при любом изменении нагрузки двигателя.

Таким образом, в выражении вращающего момента величины С и Фт постоянны и вращающий момент пропорционален только активной составляющей тока в обмотке ротора, т. е.

Изменение нагрузки или тормозного момента на валу двига­теля изменяет и скорость вращения ротора и скольжения.

Изменение скольжения вызывает изменение как силы тока в роторе I2, так и ее активной составляющей I2 cos ψ2/

Можно силу тока в роторе определить отношением э. д. с. к пол­ному сопротивлению, т. е.

где Z2, r2 и Х2 — полное, активное и реактивное сопротивления фазы обмотки ротора.

Изменение скольжения изменяет частоту тока ротора. При не­подвижном роторе (n2=0 и S = 1) вращающееся поле с одинако­вой скоростью пересекает проводники обмотки статора и ротора и частота тока в роторе равна частоте тока сети (f2=f1). При уменьшении скольжения обмотка ротора пересекается магнитным полем с меньшей частотой, так что частота тока в роторе умень­шается. Когда ротор вращается синхронно с полем (n2=n1 и S=0), проводники обмотки ротора не пересекаются магнитным полем, так что частота тока в роторе равна нулю f2=0. Таким образом, частота тока в роторе пропорциональна скольжению, т. е. f2=Sf1

Читайте также:  Двигатель дергается на холостых что может быть

Активное сопротивление обмотки ротора почти не зависит от частоты, тогда как э. д.с и реактивное сопротивление пропорциональны частоте, т. е. изменяются с изменением скольжения, и могут быть определены следующими выражениями:

где Е и X — э. д. с. и индуктивное сопротивление фазы обмотки неподвижного ротора соответственно.

Таким образом, имеем:

и вращающий момент

Следовательно, при небольших скольжениях (примерно до 20%), когда SХ мало по сравнению с r2, увеличение скольжения вызывает увеличение вращающего момента, так как при этом воз, растает активная составляющая тока в ротоке (I2соs ψ2). При больших скольжениях (SХ больше, чем r2) увеличение скольже­ния будет вызывать уменьшение вращающего момента. Таким об­разом, при больших скольжениях его увеличение хотя и увеличи­вает силу тока в роторе I2, но ее активная составляющая I2 соs ψ2 и, следовательно, вращающий мо­мент уменьшаются вследствие значительного увеличения реактивного соя противления обмотки ротора.

На рис. 114 показана зависимость вращающего момента от скольжения. При некотором скольжении Sт (примерно 20%) двигатель развивает максимальный мо­мент, который определяет перегрузочную способность двигателя и обычно в 2—3 раза превышает номи­нальный момент.

Устойчивая работа двигателя возможна только на восходящей ветви кривой зависимости момента от скольжения, т. е. при изменении скольжения в пределах от 0 до Sт. Работа двигателя на нисходящей ветви указанной зависимости, т. е. при скольжении S>Sт, невозможна, так как здесь не обеспе­чивается устойчивое равновесие моментов.

Если предположить, что вращающий момент был равен тормоз­ному (Мвр=Мторм) в точках А и Б, то при случайном нарушении равновесия моментов в одном случае оно восстанавливается, а в другом не восстанавливается. Допустим, что вращающий момент двигателя почему-либо уменьшился (например, при понижений напряжения сети), тогда скольжение начнет увеличиваться. Если равновесие моментов было в точке А, то увеличение скольжения вызовет увеличение вращающего момента двигателя и он станет вновь равным тормозному моменту, т. е. равновесие моментов вос­становится. Если же равновесие моментов было в точке Б, то увеличение скольжения вызовет уменьшение вращающего момента, который будет оставаться всегда меньше тормозного, т. е. равновесие моментов не восстановится и скорость вращения ротора бу­дет непрерывно уменьшаться до полной остановки двигателя.

Если приложить к валу двигателя тормозной момент, больший максимального момента, то равновесие моментов не восстановится и ротор двигателя остановится.

.

Вращающий момент двигателя пропорционален квадрату при­ложенного напряжения, так как пропорциональны напряжению как магнитный поток, так и сила тока в роторе. Поэтому изменение напряжения в сети вызывает значительное изменение вращаю­щего момента.

§ 94. РАБОЧИЕ ХАРАКТЕРИСТИКИ АСИНХРОННОГО ДВИГАТЕЛЯ

Рабочие характеристики асинхронного двигателя представляют собой зависимости скольжения S, числа оборотов ротора n2, раз­виваемого момента М, потребляемого тока I1, расходуемой мощности Р1, коэффициента мощности соs  и к. п. д. η от полезной мощности Р2 на валу машины. Эти характеристики (рис. 115) снимаются три естественных условиях работы двигателя, т. е. двигатель нерегулируемый, частота f1 и напряжение U1 се­ти остаются постоянными, а изменяется только нагрузка на валу двигателя.

При увеличении нагрузки на валу двигателя скольжение возрастет, причем при боль­ших нагрузках скольжение увеличивается несколько быст­рее, чем при малых.

При холостом ходе двигателя п2=n1 или S=0.

При номинальной нагрузке скольжение обычно составляет S = 3-5%.

Скорость вращения ротора

Так как при увеличении нагрузки на валу двигателя скольжение возрастает, то число оборотов будет уменьшаться. Однако из­менение скорости вращения при увеличении нагрузки от 0 до номи­нальной очень незначительно и не превышает 5%. Поэтому скоро­стная характеристика асинхронного двигателя является жесткой — она имеет очень малый наклон к горизонтальной оси.

Вращающий момент, развиваемый двигателем М, уравновешен тормозным моментом на валу М2 и моментом, идущим на преодоление механических потерь М0, т. е.

где Р2 — полезная мощность двигателя,

2 — угловая скорость ротора.

При холостом ходе двигателя вращающий момент равен М0; с увеличением нагрузки на валу этот момент также увеличивается, причем за счет некоторого уменьшения скорости ротора увеличение вращающего момента происходит быстрее, чем увеличение полезной мощности на валу.

Источник