Что такое механическая постоянная времени двигателя

Электродвигатель постоянного тока

Основные параметры электродвигателя постоянного тока

Постоянная момента

,

  • где M — момент электродвигателя, Нм,
  • – постоянная момента, Н∙м/А,
  • I — сила тока, А

Постоянная ЭДС

Направление ЭДС определяется по правилу правой руки. Направление наводимой ЭДС противоположно направлению протекающего в проводнике тока.

Наведенная ЭДС последовательно изменяется по направлению из-за перемещения проводников в магнитном поле. Суммарная ЭДС, равная сумме ЭДС в каждой катушке, прикладывается к внешним выводам двигателя. Это и есть противо-ЭДС. Направление противо-ЭДС противоположно приложенному к двигателю напряжению. Значение противо-ЭДС пропорционально частоте вращения и определяется из следующего выражения: [1]

,

  • где — электродвижущая сила, В,
  • – постоянная ЭДС, В∙с/рад,
  • — угловая частота, рад/с

Постоянные момента и ЭДС в точности равны между собой KT = KE. Постоянные KT и KE равны друг другу, если они определены в единой системе едениц.

Постоянная электродвигателя

Одним из основных параметров электродвигателя постоянного тока является постоянная электродвигателя Kм. Постоянная электродвигателя определяет способность электродвигателя преобразовывать электрическую энергию в механическую.

,

  • где — постоянная электродвигателя, Нм/√ Вт ,
  • R — сопротивление обмоток, Ом,
  • – максимальный момент, Нм,
  • — мощность потребляемая при максимальном моменте, Вт

Постоянная электродвигателя не зависит от соединения обмоток, при условии, что используется один и тот же материал проводника. Например, обмотка двигателя с 6 ветками и 2 параллельными проводами вместо 12 одиночных проводов удвоят постоянную ЭДС, при этом постоянная электродвигателя останется не изменой.

Жесткость механической характеристики двигателя

,

  • где — жесткость механической характеристики электродвигателя постоянного тока

Напряжение электродвигателя

Уравнение баланса напряжений на зажимах двигателя постоянного тока имеет вид (в случае коллекторного двигателя не учитывается падение напряжения в щеточно-коллекторном узле):

,

Уравнение напряжения выраженное через момент двигателя будет выглядеть следующим образом:

Соотношение между моментом и частотой вращения при двух различных напряжениях питания двигателя постоянного тока неизменно. При увеличении частоты вращения момент линейно уменьшается. Наклон этой функции KTKE/R постоянный и не зависит от значения напряжения питания и частоты вращения двигателя.

Читайте также:  Назначение холостого хода двигателя

Благодаря таким характеристикам упрощается управление частотой вращения и углом поворота двигателей постоянного тока. Это характерно для коллекторных и вентильных двигателей постоянного тока, что нельзя сказать о двигателях переменного тока и шаговых двигателях [1].

Мощность электродвигателя постоянного тока

Упрощенная модель электродвигателя выглядит следующим образом:

  • где I – сила тока, А
  • U — напряжение, В,
  • M — момент электродвигателя, Н∙м
  • R — сопротивление токопроводящих элементов, Ом,
  • L — индуктивность, Гн,
  • Pэл — электрическая мощность (подведенная), Вт
  • Pмех — механическая мощность (полезная), Вт
  • Pтеп — тепловые потери, Вт
  • Pинд — мощность затрачиваемая на заряд катушки индуктивности, Вт
  • Pтр — потери на трение, Вт

Механическая постоянная времени

Механическая постоянная времени — это время, отсчитываемое с момента подачи постоянного напряжения на электродвигатель, за которое частота вращения ненагруженного электродвигателя достигает уровня в 63,21% (1-1/e) от своего конечного значения.

,

  • где — механическая постоянная времени, с

Источник

Решение задач по ТОЭ, ОТЦ, Высшей математике, Физике, Программированию.

Главная Цены Оплата Примеры решений Отзывы Ccылки Теория Книги Сотрудничество Форум
Теория / Электрические микромашины / Лекция 8. Динамические свойства асинхронных исполнительных двигателей

§ 1.4. Динамические свойства асинхронных исполнительных двигателей

Одним из главных требований, предъявляемых к исполнительным двигателям, является требование высокого быстродействия,под которым понимают способность двигателя достигать заданной частоты вращения за максимально короткое время.

Быстродействие определяется скоростью протекания электромагнитных и электромеханических переходных процессов, возникающих в двигателе при подаче сигнала управления.

Как известно, скорость затухания переходных процессов зависит от постоянных времени — электромагнитной и электромеханической. Благодаря большому активному сопротивлению ротора, электромагнитная постоянная времени Тэм= L/r становится на порядок меньше электромеханической. Поэтому электромагнитными переходными процессами здесь можно пренебречь и считать, что быстродействие исполнительного двигателя определяется только электромеханической постоянной времени. Последнюю найдем из уравнения движения при пуске двигателя вхолостую M = J×dw/dt. Здесь J — момент инерции вращающихся частей.

Механические характеристики идеального асинхронного исполнительного двигателя линейные, что позволяет описать их одной формулой М = Мп(1 — w/wо), где wо и Мп — угловая скорость холостого хода и пусковой момент. Подставив эту формулу в уравнение движения и решив его относительно w, получим

где Тм — электромеханическая постоянная, времени

(1.11)

На рис. 1.13 показана кривая разгона двигателя, из которой видно, что угловая скорость вращения асимптотически приближается к установившемуся значению wо. При t = Tмугловая скорость вращения w = wо(1 — е -1 ) = 0,633wо. Следовательно, постоянную Тм можно рассматривать как время разгона двигателя до скорости, соответствующей 0,633wо.

Рис. 1.13. Кривая разгона двигателя при пуске в холостую

При амплитудном управлении механические характеристики непараллельные, т.е. пусковой момент пропорционален коэффициенту сигнала Мп = Мпкaэ, где Мпк — пусковой

момент при круговом поле, а угловая скорость идеального холостого хода — не пропорциональна aэ. Ее значение найдем из (1.6), положив m = 0

Подставим эти значения Мп и wо в (1.11), получим

Из этой формулы видно, что с уменьшением коэффициента сигнала, электромеханическая постоянная времени растет, а это значит — быстродействие исполнительного двигателя ухудшается. Сказанное относится и к конденсаторному управлению, чьи характеристики похожи на характеристики при амплитудном управлении.

При фазовом управлении механические характеристики параллельные, т.е. пусковой момент и угловая скорость холостого хода изменяются пропорционально коэффициенту сигнала (Мп = Мпкsinb, wо = w1sinb) . В этом случае электромеханическая постоянная времени будет

т.е. при фазовом управлении постоянная времени и быстродействие не зависят от коэффициента сигнала.

Так как механические характеристики реальных двигателей проходят выше идеальных, постоянные времени реальных двигателей всегда получаются немного меньше идеальных. Однако сказанное выше относительно влияния коэффициента сигнала на быстродействие остается справедливым и здесь.

В выражения постоянных времени входит значение угловой скорости вращения wо = 2pf/p, следовательно, на величину Тмвлияет частота сети и число пар полюсов машины. По этой причине двигатели, рассчитанные на повышенную частоту, имеют большую постоянную времени и худшее быстродействие, чем двигатели, спроектированные на частоту 50 Гц (см. табл.1).

Таблица1. Электромеханические постоянные времени асинхронных исполнительных двигателей

АИД с полым немагнитным ротором

АИД с полым ферромагнитным ротором

АИД с ротором «беличья клетка»

§ 1.5. Самоход и пути его устранения

Самоходом называется вращение двигателя при отсутствии сигнала управления. На практике различают два вида самохода: 1) технологический и 2) параметрический.

Т е х н о л о г и ч е с к и й самоход проявляется в начале вращения двигателя при подаче только напряжения возбуждения.

Причинами технологического самохода являются слабые эллиптические поля, возникающие в двигателе, благодаря наличию короткозамкнутых контуров в сердечниках и обмотках из-за их плохой изоляции, благодаря неравномерности воздушного зазора, неодинаковой магнитной проводимости стали вдоль и поперек проката и другим факторам технологического характера, приводящим к разделению магнитного потока возбуждения на два, сдвинутых в пространстве и во времени. Как известно, этого достаточно для возникновения вращающихся полей (см. асинхронный двигатель с экранированными полюсами).

Для устранения технологического самохода необходима тщательная технологическая проработка двигателя и высокая культура его производства: хорошая изоляция обмотки и листов стали, точная механическая обработка деталей, обязательна вееробразная шихтовка пакетов — смещение каждого последующего листа на одно зубцовое деление относительно предыдущего.

П а р а м е т р и ч е с к и й самоход проявляется в продолжении вращения двигателя после снятия сигнала управления.

При снятии сигнала управления исполнительный двигатель становится однофазным, который хотя и не имеет собственного пускового момента, но, будучи раскрученным, продолжает работать. Для исполнительного двигателя такое явление не допустимо.

С целью устранения параметрического самохода асинхронные исполнительные двигатели изготавливаются с роторами, имеющими большое активное сопротивление. В результате момент однофазной машины становится не движущим (+) а тормозящим (-), в чем легко убедиться, рассматривая характеристики двух однофазных двигателей с различными критическими скольжениями: sк = 0,3 и sк = 1 (рис. 1.14,а и б).

Рис. 1.14. Механические характеристики однофазного двигателя с sk = 0,3 (а) и sk = 1 (б)

Таким образом, критические скольжения асинхронных исполнительных двигателей должны быть равными или большими единицы. В реальных двигателях sк= 2¸3, а отдельных случаях даже sк = 7¸8.

Критерий (условие) отсутствия самохода найдем на основании схемы замещения однофазного асинхронного двигателя (рис. 1.15)

В отличии от известной схемы [1], здесь отсутствуют индуктивные сопротивления ротора, которыми мы пренебрегли ввиду их малости по сравнению с активными сопротивлениями rр.

Рис. 1.15. Схема замещения однофазного асинхронного двигателя

Преобразуем эту схему, заменив параллельные контуры последовательными (рис.1.16)

Рис. 1.16. Преобразованная схема замещения однофазного асинхронного двигателя

Электромагнитная мощность однофазного двигателя с точки зрения превращения ее в полезную механическую мощность равна разности электромагнитных мощностей прямой и обратной последовательностей

Источник

Adblock
detector