Что такое корпус двигателя

КОРПУС ДВИГАТЕЛЯ

Корпус двигателя состоит из блока цилиндров, картера, головки блока, гильз, шпилек или болтов, стягивающих головку с блоком, и др. У большинства автотракторных двигателей блок цилиндров выполнен заодно с верхней частью картера и называется блок-картером. Различают следующие силовые схемы блок-картера двигателей:

1) с несущим блоком цилиндров (рис. 2.1, а), когда силы давления газов нагружают элементы блока цилиндров. Разновидностью данной силовой схемы при мокрых гильзах является схема «с несущей рубашкой» (рис. 2.1, б). В этом случае газовые силы нагружают (растягивают) только стенки водяной рубашки.

2) с несущими силовыми шпильками (рис. 4.1, в). Блок-картеры, выполненные по данной схеме, в силу их меньшей нагруженности могут отливаться из алюминиевого сплава.

Расчеты блок-картера и головки блока представляет большие трудности и здесь не рассматриваются.

В проекте выполняют расчеты на прочность гильзы цилиндров и шпильки (болта) головки блока.

Рис. 2.1. Силовые схемы ДВС с жидкостным охлаждением:

а – с несущим блоком цилиндров; б – с несущей рубашкой; в – с несущими силовыми шпильками.

Толщину стенки гильзы (δг) принимают по прототипу проектируемого двигателя и проверяют на прочность по формуле, которая применяется для расчета цилиндрических сосудов, работающих под давлением

=0,5D (2.1)

где D – диаметр цилиндра, мм;

– расчетная толщина стенки гильзы, мм;

– давление в цилиндре в конце сгорания, МПа;

– допускаемое напряжение на растяжение, для стальных гильз , для чугунных гильз .

Шпильки головки блока цилиндров работают на растяжение. Сила растяжения меняется в течение цикла от минимума до максимума. Минимальное значение равно силе предварительной затяжки шпильки, а максимальное равно сумме сил предварительной затяжки и силы от давления в конце сгорания, приходящегося на одну шпильку, с учетом уменьшения этой силы из-за податливости (деформация материала от нагрузок) стягиваемых деталей. Приближенно расчет шпильки можно выполнить на растяжение исходя из статической прочности по известной формуле

(2.2)

где – максимальная сила растяжения шпильки;

– площадь минимального (опасного) сечения шпильки.

– допускаемое напряжение материала шпильки на растяжение.

Шпильки изготавливают из легированных сталей, например,18ХНМА, 20ХНВА, 40ХНМА и др.

Допускаемое напряжение можно определить по формуле

(2.3)

где – предел текучести материала шпильки;

– коэффициент запаса прочности шпильки на растяжение, должен быть не менее 2.

Максимальная сила растяжения шпильки определяется

(2.4)

где – сила предварительной затяжки шпильки;

– термическая сила, создаваемая деформациями элементов газового стыка при нагреве их до рабочей температуры;

– коэффициент дополнительной нагрузки резьбового соединения, для ДВС с короткими (жесткими) шпильками =0,06 – 0,07 (до 0,15), для ДВС с удлиненными (податливыми) шпильками =0,03 – 0,04;

–максимальная сила давления газов действительного цикла на расчетном режиме, приходящаяся на одну шпильку, МН;

,

– число шпилек, приходящихся на один цилиндр, .

,

– максимальное давление газов действительного цикла на расчетном режиме, Мпа;

Dпр – диаметр отверстия в прокладке головки блока. Для ДВС с верхним расположением клапанов Dпр=(1,05…1,14)D, для ДВС с нижним расположением клапанов Dпр=(1,3…1,48)D; D – диаметр цилиндра.

Сила предварительной затяжки шпильки определяется по формуле

, (2.5)

где – коэффициент запаса затяжки шпильки, меньшие значения для ДсИЗ, большие – для дизелей с наддувом.

В проекте при выполнении расчетов термической силой можно пренебречь.

Источник

Лекция 14. Корпусные элементы двигателей внутреннего

Сгорания

Корпус двигателя состоит из элементов, на которых монтируются его механизмы, а также опоры, с помощью которых ДВС устанавливается на автомобиль или другую машину. Он состоит из цилиндров или блока цилиндров и картера, состоящего из самого картера, на который крепятся блок цилиндров или отдельные цилиндры крышек коренных подшипников и масляного поддона.

Головки цилиндров с помощью болтов устанавливаются на блок, а стык между ними называется газовым стыком и уплотняется прокладкой.

Некоторые конструкции выполнены с моноблочным корпусом.

На конструкцию корпуса влияют:

1. Большие циклические нагрузки от газовых и инерционных сил.

2. Высокая температура, давление при больших градиентах температур по объему.

3. Значительные скорости движения сопряженных поверхностей цилиндров поршневой группы и подшипниковых узлов при больших удельных давлениях.

4. Коррозионное и эрозионное воздействие от окружающей среды и от рабочего тела во внутрицилиндровом пространстве.

Кроме того, от корпуса требуется максимальная жесткость конструкции и минимальная масса. Обычно она составляет 25. 30 % от массы всего двигателя.

Корпус ДВС состоит (рис. 14.1) из 1 – блока цилиндров, в котором двигаются поршни, картера 2, в котором на подшипниках расположен коленчатый вал и поддона 3 для сбора масла.

Блок цилиндров

Блок цилиндров может выполняться литым вместе с картером из чугуна или отдельно блоком нескольких цилиндров или (при воздушном охлаждении) в виде отдельных цилиндров, монтируемых на картере с помощью стяжных болтов или несущих шпилек (рис. 14.1, б).

На блоке цилиндров расположен либо блок головок цилиндров, либо отдельные головки (рис. 14.1, а), закрывающие сверху цилиндры. В головках цилиндров обычно расположены клапаны, кулачковые валы и другие элементы механизма газораспределения.

Картер является основной несущей частью корпуса ДВС, обеспечивающей жесткость всей конструкции. В нем на оребренных перегородках расположены подшипники коленчатого вала. Крышки подшипников обычно расположены ниже линии разъема с поддоном и крепятся болтами или шпильками (рис. 14.1, б). Иногда крышку или подвеску стягивают горизонтальными шпильками (рис. 14.1, в) для увеличения жесткости. На нижнем фланце картера расположены четыре прилива, которыми двигатель опирается на раму автомобиля через амортизационные подушки. При нижнем расположении кулачкового валика механизма газораспределения в картере размещены его подшипники.


Поддон обычно штампуют из листовой стали. Иногда крышку коренных опор коленчатого вала объединяют в монолитную конструкцию коробчатой формы, называемую постельной плитой.

При жидкостном охлаждении цилиндров применяют конструкции с несущей рубашкой, несущими силовыми шпильками или с несущим блоком цилиндров.

Применение цельнолитого блока цилиндров с рубашкой водяного охлаждения обеспечивает высокую прочность и жесткость блок-картера, уменьшает габариты и массу, сокращает объем механической обработки. Однако необходимо обеспечить повышенную износостойкость зеркала цилиндра за счет хонингования и особых покрытий для удержания масла на поверхности зеркала. Выход из строя одного цилиндра приводит к необходимости замены всего блока. Блоки цилиндров с вставными гильзами, сухими и мокрыми представлены на рис. 14.2. Сухие гильзы с опорными буртами запрессовывают в блок или устанавливают по скользящей посадке.

Читайте также:  Капиталка двигателя ауди 80 своими руками

Мокрые гильзы (см. рис. 14.2) также запрессовываются в блок до опорного фланца 1, который может быть в верхней, средней или нижней части гильзы. Более низкое расположение фланца улучшает охлаждение наиболее нагруженной термически верхней части гильзы. Для уменьшения деформации от боковой силы поршня N служат два пояска 2, а для герметизации рубашки в канавках у поясков помещают уплотнительные кольца из фторкаучука, фторугольно-водородного каучука или из резины.

Верхний посадочный пояс располагают так, чтобы при положении поршня в ВМТ его днище находилось на уровне жидкости в рубашке.

Верхний торец гильзы должен выступать на 0,05…0,15 мм над поверхностью блока для обеспечения надежной герметизации газового стыка.

Толщина стенок гильз 5…8 мм. Длина цилиндра должна обеспечивать движение противовесов и шатуна, допускается выход нижнего края юбки в НМТ на величину 0,2D, если это не мешает нижнему маслосъемному кольцу. Высота водяной рубашки ограничивается осью пальца, что составляет около 70 % хода поршня S. Гильзы цилиндров изготавливают центробежным литьем из серых малолегированных чугунов перлитной структуры со среднепластинчатым графитом с добавками хрома, молибдена, фосфора, меди, ванадия для повышения износокоррозионной стойкости или из азотируемых сталей.

Для снижения угара масла и повышения износостойкости на зеркале цилиндра создают особый рельеф методом накатки или хонингования.

Дата добавления: 2016-02-16 ; просмотров: 1113 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Источник

Что такое корпус двигателя

В зависимости от принятой компоновочной схемы, типа и назначения двигателя корпус может состоять из следующих соединенных между собой деталей: отдельных или объединенных в блок цилиндров с вставными втулками (гильзами) или без них, картера (блок-картера), фундаментной рамы или подвесных опор коленчатого вала, поддона, деталей крепления и уплотнения. Часто блок цилиндров и картер выполняют в виде одной детали — блок-картера. К корпусным деталям двигателя относят также головку (крышку) цилиндров.

Картер вместе с цилиндрами, головкой (крышкой), поддоном или фундаментной рамой (при наличии последней), прокладками, сальниками образует закрытую, непроницаемую для газов, смазочного материала и охлаждающей жидкости (в случае двигателя жидкостного охлаждения) полость, где расположен кривошипно-шатунный механизм. На корпусных деталях обычно крепят различные элементы механизма газораспределения, передач, а также различные агрегаты двигателя. Корпусные детали определяют внешний вид двигателя. В современных форсированных двигателях на корпусные детали действуют высокие нагрузки от сил инерции и давления газов в цилиндрах. Кроме того, ряд деталей работает в условиях повышенных температур и значительных температурных напряжений. Детали корпуса являются опорами многих подвижных соединений двигателя, в том числе подшипниковых узлов. Поэтому детали корпуса наряду с прочностью должны обладать высокой жесткостью, последнее относится и к корпусу в целом. Важными требованиями являются удобство монтажа и обслуживания, а также простота, технологичность и возможно меньшая металлоемкость конструкции. На долю корпусных деталей приходится 25…70% всей массы двигателя, что свидетельствует о значительном резерве снижения металлоемкости двигателя именно в результате облегчения этих деталей.

В автомобильных, тракторных, ряде быстроходных судовых и тепловозных двигателей жидкостного охлаждения широко применяют блок-картерную конструкцию. В этом случае блок цилиндров (рубашек), являющийся несущей деталью, отливают вместе с верхней частью картера, благодаря чему образуется общая монолитная деталь — блок-картер. При этом обеспечиваются высокая прочность, жесткость, компактность, снижение массы и ряд других преимуществ.

Рекламные предложения на основе ваших интересов:

На рис. 1, а представлен блок-картер V-образного шестицилиндрового тракторного дизеля, выполненный в виде отливки из качественного серого чугуна. В шести расточках левого и правого блоков устанавливают омываемые жидкостью гильзы цилиндров, в верхней центральной расточке — общий для обоих рядов цилиндров распределительный вал, от которого через толкатели и штанги, расположенные в индивидуальных литых колодцах III , осуществляется привод клапанов. В нижней части блок-картера выполнены расточки II под коренные подшипники коленчатого вала; для повышения жесткости коренных опор нижняя плоскость блок-картера опущена относительно оси коленчатого вала.

На рис. 1, б представлен блок-картер V-образного восьмицилиндрового автомобильного дизеля, также отлитый из качественного серого чугуна. Блок-картер выполнен в виде коробчатой детали, повышенная жесткость которой обеспечивается системой подкрепляющих ребер и межцилиндровых перегородок — стоек, по которым передаются усилия от затяжки крепежных деталей, сил давления газов и инерции. В отличие от описанного выше блок-картера с общей на каждый ряд головкой на блок-картер (рис. 1, б) устанавливают индивидуальные головки цилиндров, что несколько снижает общую жесткость корпуса. Поэтому особое внимание уделяется жесткости верхней плиты блока, в которую вставлены гильзы цилиндров, а также опор для подшипников коленчатого вала. Для повышения жесткости опор их крышки закреплены, помимо болтов, болтами в горизонтальном направлении. Такую конструкцию применяют в современных двигателях самых различных типов и назначений.

Дальнейшее повышение жесткости корпуса при сокращении длины двигателя дает применение блок-картера туннельного типа. В этом случае опоры для коренных подшипников (обычно качения) коленчатого вала не имеют разъемов. Коленчатый вал монтируют с торца двигателя.

В автомобильных и тракторных двигателях воздушного охлаждения применяют конструкцию с несущими шпильками (рис. 2). Отдельные цилиндры устанавливают в расточках картера и вместе с индивидуальными головками цилиндров закрепляют длинными шпильками со значительным усилием предварительной затяжки. Шпильки, ввернутые в утолщения картера, воспринимают усилия от давления газов в цилиндре и поэтому являются несущими.

В более мощных тепловозных, судовых и других быстроходных форсированных двигателях используют различные варианты силовых схем корпуса (несущего блок-картера или несущих силовых шпилек) . На рис. 3 представлен стальной сварно-литой блок-картер форсированного быстроходного дизеля. Силовые шпильки крепления крышек цилиндров, установленные в плите картера, разгружают от газовых сил блок цилиндров, состоящий из верхней плиты, поперечных стоек и боковых листов. Лоток механизма газораспределения, включающий опорную плиту с подкрепляющими ребрами и боковые листы, замыкает силовую схему сверху, образуя воздушный ресивер.

Читайте также:  Как разобрать и собрать двигатель крайслер

Нижняя часть блок-картера образована набором сваренных между собой стальных литых секций — стоек. Особое внимание уделено жесткости опор подшипников. Достаточно массивная крышка прикреплена к картеру мощными болтами, а в горизонтальном направлении фиксирована двумя рядами боковых болтов. Нижние болты замыкают силовой контур опоры коренного подшипника, а верхние разгружают плоскость разъема от усилий сдвига.

Аналогичные облегченные конструкции корпуса с подвесным коленчатым валом нашли применение в более крупных форсированных двигателях.

Во всех крупных малооборотных судовых дизелях, а также во многих среднеоборотных дизелях с повышенными (более 400 мм) и даже относительно небольшими (для этого класса двигателей 250…350 мм) диаметрами цилиндра коленчатый вал укладывают на специальную фундаментную раму. Корпус малооборотных судовых дизелей существенно отличается по конструкции от рассмотренных выше корпусов автомобильных, тракторных и тепловозных двигателей. Традиционно он включает фундаментную раму, стойки картера с прикрепленными направляющими крейцкопфов и блок цилиндров. Все перечисленные детали соединены длинными анкерными связями, воспринимающими рабочие нагрузки.

Традиционные конструкции корпуса с А-образными стойками картера иногда заменяют коробчатыми конструкциями, повышающими изгибную жесткость корпуса, упрощающими технологию изготовления, сборки и обслуживание в эксплуатации.

На рис. 4 представлен корпус малооборотного судового дизеля, состоящий из фундаментной рамы, промежуточной стойки и станины. В многоцилиндровых двигателях корпус имеет поперечные разъемы, что упрощает изготовление и транспортировку деталей двигателей с большими диаметрами цилиндров. На станины устанавливают цилиндры (не показаны), соединенные в единый блок болтами.

В быстроходных двигателях, а также среднеоборотных с меньшим диаметром цилиндра применяют блоки цилиндров в виде отлитого из чугуна или легкого сплава блока 1 рубашек, в расточки которого устанавливают охлаждаемые жидкостью гильзы (втулки). Сверху к блоку через уплотнительную прокладку притягивается общая на все цилиндры (или отдельная на каждый цилиндр) головка, закрываемая крышкой.

Фундаментная рама является основным элементом в общей силовой схеме корпуса малооборотного судового дизеля, обеспечивая его необходимую жесткость. Она может быть литой, сварной, а также свар-но-литой конструкции. Последний тип имеет лучшие массогабаритные характеристики и находит все большее применение.

На рис. 5 представлена сварно-литая фундаментная рама малооборотного судового дизеля. Рама состоит из двух продольных балок, связанных поперечными перегородками, расположенными в плоскостях коренных подшипников коленчатого вала. Последние устанавливают в постелях и закрепляют сверху специальными крышками. Снизу раму закрывают стальным маслосборником (иногда съемным), имеющим уклон в сторону кормовой части двигателя. В колодцах размещают анкерные связи, закрепляющие на раме детали корпуса двигателя. Опорными полками рама крепится к фундаменту корпуса судна.

Коренные подшипники современных двигателей выполняют, как правило, в виде подшипников скольжения, хотя в ряде быстроходных форсированных дизелей с успехом применяют подшипники качения, обеспечивающие снижение габаритов двигателя по длине. Кроме того, предусмотренный в этом случае туннельный картер повышает жесткость корпуса двигателя.

К преимуществам подшипников скольжения относятся малые радиальные размеры и масса, простота монтажа многоколенных валов, демпфирующая способность и высокая долговечность. Однако требуются высокая точность обработки и стабильность геометрических характеристик подшипникового узла, обеспечивающих жидкостное трение на всех режимах работы подшипника (кроме пуска).

Как в шатунных, так и в коренных подшипниках скольжения применяют разрезные тонкостенные стальные вкладыши (рис. 7, а), заливаемые по поверхности, обращенной к шейке коленчатого вала, слоем антифрикционного материала (бронзы, алюминиевые сплавы). Кроме того, наносится тонкий приработочный, защитный и другие слои, улучшающие условия работы подшипников. К тонкостенным относятся вкладыши толщиной 2,9 + 0,023 £)„, где D„ — диаметр постели под подшипник, мм.

При работе в подшипнике выделяется значительное количество теплоты, отводимой со смазочным материалом, а также в корпус подшипника. Для отвода теплоты в корпус необходимо плотное прилегание вкладыша к постели, достигаемое тщательной обработкой поверхностей, необходимым натягом и высокой жесткостью крышки подшипника.

В малооборотных судовых двигателях коренные (рамовые) подшипники устанавливают в постелях фундаментной рамы. Подшипники состоят из двух толстостенных полувкладышей, фиксированных от осевого и кругового перемещений штифтами. Их изготовляют из чугуна или стали и заливают слоем баббита или другим антифрикционным материалом.

На рис. 7, б представлен толстостенный вкладыш. В некоторых случаях между стыками полувкладышей устанавливают одну или несколько прокладок. Сверху вкладыши прижимают крышкой, прикрепляют к фундаментной раме болтами, шпильками или домкратами, упирающимися в выступы стенки картера.

В качестве подшипников качения в мотоциклетных, лодочных и других двигателях малой мощности применяют стандартные шариковые подшипники. В более мощных форсированных двигателях автотракторного типа и специального назначения используют радиальные роликовые подшипники без внутреннего кольца, непосредственно устанавливаемые на коренной опоре коленчатого вала, которой в этом случае является круглая щека.

Поверхность блока цилиндров используется в качестве рабочей лишь в некоторых двигателях, как правило, с небольшим диаметром цилиндра. В большинстве двигателей жидкостного охлаждения применяют специальную деталь, вставляемую в расточку блока (цилиндра) —втулку (гильзу) цилиндра. Тщательно обработанная внутренняя цилиндрическая поверхность втулки (зеркало цилиндра) является рабочей поверхностью, по которой перемещается поршень. Втулка относится к теплонапряженным особо ответственным деталям двигателя. Помимо прочности в условиях высоких механических (монтажные усилия, давление газов) и тепловых нагрузок, она должна обладать стабильностью геометрической формы, отчего существенно зависят удельные расходы топлива и смазочного материала. Внутренняя поверхность втулки (особенно верхней ее части) омывается горячими газами, воспринимает теплоту от поршня контактным способом (особенно через кольца) и в результате трения. Вместе с этим по условиям смазывания температура поверхности втулки не должна быть очень высокой, в связи с чем втулка должна эффективно охлаждаться.

В автомобильных, тракторных и форсированных двигателях специального назначения применяют «мокрые» втулки, отливаемые из специального чугуна, а иногда стальные точеные конструкции с верхним опорным фланцем, опирающимся на расточку в верхней плите блок-картера.

В двигателях с принудительным воспламенением, где нагрузка на гильзу цилиндра значительно меньше, опорный фланец часто смещают от верхнего торца.

Для повышения герметичности газового стыка между головкой и втулкой цилиндра на фланце последней иногда выполняют кольцевой буртик, незначительно выступающий над плоскостью блока цилиндров.

В случае применения индивидуальных головок цилиндров для уплотнения газового стыка во фланце предусматривают специальную канавку, в которую помещают уплотнительное металлическое кольцо (стальное, медное).

Читайте также:  Аварийный режим работы блока управления двигателем

Уплотняют полости охлаждения специальными резиновыми кольцами, установленными в проточенные по наружной поверхности втулки (гильзы) канавки или в расточки блока цилиндров у нижнего опорного пояса; в этом случае наружная поверхность втулки гладкая.

В менее форсированных двигателях вместо «мокрых» втулок (гильз), наружная поверхность которых подвержена кавитации, применяют «сухие» гильзы толщиной 2…4 мм, запрессованные или установленные с малым зазором в расточку блока цилиндров. Малая толщина «сухой» гильзы обусловливает экономию качественного материала, однако теплоотвод от рабочей поверхности цилиндра в этом случае ухудшается ввиду дополнительного термического сопротивления по наружной поверхности гильзы.

Смазывание рабочей поверхности (зеркала цилиндра) в быстроходных двигателях осуществляется в результате разбрызгивания масла при работе кривошипно-шатунного механизма. При кривошипно-камерной схеме газообмена в двигателях с внешним смесеобразованием смазочный материал подается в смеси с топливом.

В тепловозных и среднеоборотных судовых двигателях применяют «мокрые» втулки из чугуна. При этом наряду с конструкциями, у которых охлаждающая полость образована внутренними поверхностями блока, широко используют конструкции цилиндров с индивидуальными охлаждающими рубашками. В этом случае блок не подвергается коррозии, что повышает его прочность и срок службы.

На рис. 8 представлена втулка подвесного типа с рубашкой охлаждения четырехтактного судового дизеля. Втулка короткими шпильками присоединена к крышке цилиндра, образуя с ней единый узел, скрепленный с блок-картером основными силовыми шпильками. Значительные усилия затяжки в этом случае не деформируют втулку.

Втулки цилиндров форсированных судовых двухтактных малооборотных дизелей отличаются высоким уровнем тепловых и механических нагрузок, особенно на верхний пояс. Для уменьшения тепловой напряженности во втулках и других деталях цилиндропоршневой группы этих двигателей применяют специальные каналы, высверленные во фланце втулки под углом к оси цилиндра. Они не снижают заметно прочности втулки, но обеспечивают подвод охлаждающей жидкости непосредственно к нагреваемой поверхности.

На рис. 9 показана цилиндропоршне-вая группа форсированного малооборотного дизеля. Во втулке, крышке цилиндра и поршне просверлены каналы для подвода охлаждающей жидкости. Смазывание цилиндров осуществляется с помощью специальных лубрикаторов, обеспечивающих подачу масла в нескольких точках, равномерно расположенных по периметру втулки.

Цилиндры двигателей воздушного охлаждения устанавливают на картер раздельно. Лишь в двигателях с малым диаметром цилиндра встречается объединение двух цилиндров в общую отливку.

На рис. 10, а показан цилиндр тракторного дизеля, выполненный из чугуна. Благодаря оребрению наружной поверхности увеличивается площадь охлаждаемой поверхности. При этом высоту ребер делают переменной по длине цилиндра, увеличивая к верхней, более нагретой части. Кроме монометаллических чугунных цилиндров (реже стальных), а также выполненных из алюминиевого сплава и покрытых по внутренней поверхности слоем хрома, применяют составные цилиндры.

На рис. 10, б показана литая конструкция, у которой чугунная втулка соединена с оребренным цилиндром, выполненным из легкого сплава. Известны составные конструкции цилиндров, в которых на чугунной или стальной втулке закреплены.

(например, с помощью закатки) охлаждающие ребра из высокотеплопроводного материала. Применяют и блочные конструкции, когда цилиндр и головка отлиты как одно целое.

Крышки (головки) цилиндра

Крышка, соединенная с цилиндром (блоком цилиндров), замыкает силовую схему сверху, образуя вместе с днищем поршня и стенками цилиндра камеру сгорания двигателя. На крышку (головку) действуют высокие тепловые и механические нагрузки (монтажные усилия от затяжки силовых шпилек, силы давления газов). Крышки (головки) цилиндров — сложные отливки, внутри которых расположены газовоздушные каналы, колодцы под силовые шпильки, форсунку, привод клапанов, отверстия под направляющие клапанов, полости для охлаждающей жидкости. Головки изготовляют из качественного чугуна, легких алюминиевых сплавов, а иногда и из легированной стали (крышки форсированных малооборотных судовых дизелей).

В автомобильных и тракторных двигателях часто применяют общие на несколько цилиндров блочные головки. Конструкция головок двигателей с принудительным воспламенением во многом определяется формой камеры сгорания и схемой расположения клапанов. В четырехтактных двигателях при двух клапанах на цилиндр характерно наклонное расположение клапанов в плоскости, параллельной оси распределительного вала. При этом достигается увеличение диаметра впускного клапана и упрощается привод клапанов. Дальнейшее форсирование бензиновых двигателей по частоте вращения связано в ряде случаев с переходом на четырехклапанные головки с целью улучшения наполнения. Головки автомобильных и тракторных дизелей более массивны вследствие более высокого давления в цилиндре при сгорании. Конструкция головки также зависит от типа камеры сгорания. Применяются как блочные головки, так и индивидуальные на каждый цилиндр. В случае расположения камеры сгорания в поршне головка имеет сравнительно простую форму с плоским днищем.

При двух клапанах на цилиндр в четырехтактных дизелях форсунку обычно смещают относительно линии клапанов и располагают наклонно.

При четырех клапанах форсунку удается разместить в центре, что предпочтительно с точки зрения повышения прочности днища головки.

Более сложны по конструкции головки с разделенными камерами сгорания, когда в полости головки дополнительно располагают камеру в форме усеченной сферы, конуса или цилиндра.

Крышки цилиндров четырехтактных и двухтактных с клапанно-щелевой продувкой тепловозных и среднеоборотных судовых дизелей весьма сложны по конструкции. Они имеют обычно четыре клапана и центрально-расположенную форсунку. На рис. 13, а представлена крышка цилиндра мощного среднеоборотного дизеля. Помимо выпускного клапана, на разрезе показан пусковой клапан. Тарельчатые пружины прижимают корпуса клапанов к крышке цилиндра.

Крышки цилиндров форсированных судовых двухтактных малооборотных дизелей различаются по устройству в зависимости от применяемой схемы газообмена. В случае петлевой схемы газообмена отсутствуют выпускные клапаны и конструкция крышки оказывается простой. При клапанно-щелевой схеме газообмена (рис. 13, б) конструкция усложняется наличием выпускного клапана, устанавливаемого в специальном корпусе.

При центральном расположении клапана требуется несколько форсунок для впрыскивания топлива.

Головки цилиндров двигателей воздушного охлаждения сильно оребрены. Ребра занимают 60…75% оребренной поверхности охлаждения. Поверхность охлаждения должна обеспечивать отвод необходимого количества теплоты при высоких аэродинамических характеристиках охлаждающих ребер. Омываемые воздухом поверхности имеют обтекаемую форму; их располагают в соответствии с направлением теплового и воздушного потоков. В первую очередь охлаждающий воздух подается на распылитель форсунки (свечу зажигания), а также выпускной патрубок и межклапанную перемычку.

Источник