Что такое коллекторный двигатель с турбиной

Коллекторный двигатель- Принцип работы и отличия от бесколлекторного двигателя

В конструкции современного автомобиля задействован коллекторный двигатель, агрегат, использующий контакты с целью определения положения нахождения ротора.Текущие тенденции на мировом рынке автомобилестроения сводятся к полной замене силовых установок, работающих за счет внутреннего сгорания топлива на электрические моторы. За последние годы, призывы к увеличению планки по количеству вредных выбросов в атмосферу, звучат, чуть ли не ежедневно, а это укрепляет позиции электрических агрегатов.

Принцип работы электрического двигателя, преобразовать электрическую энергию в механическую работу. Если сравнивать агрегаты с двигателями внутреннего сгорания, электрические моторы предпочтительней, преимущество: компактность, простота, долговечность, экологически безвредны и масса других плюсов.

В конструкции современного автомобиля задействован коллекторный двигатель, агрегат, использующий контакты с целью определения положения нахождения ротора.

Электромобиль Tesla model S:

Описание коллекторного двигателя

Прежде, перед рассмотрением вариантов установок, проясним, что значит понятие коллекторный двигатель. Электрический мотор, это устройство, преобразующее электрику в механику и наоборот. Если обмотка мотора имеет связующее звено с узлом коллектора и принимает участие в трансформации энергии, то такой агрегат носит название коллекторный.

Якоби Б.С. (1801-1874гг) изобретатель первого коллекторного двигателя в 1837г.

Элементы электрического двигателя:

  • Ротор, деталь мотора, подвержена вращению;
  • Статор, деталь мотора, остаётся в стационарном положении;
  • Индуктор, кусок агрегата, который с целью сформировать момент, участвует в образовании потока магнитного поля. В состав индуктора входят: магниты, совокупность витков. Механизм выполняется в качестве части ротора или неподвижной детали;
  • Якорь, агрегат, поддерживающий движение нагрузочного, упорядоченного движения частиц, носителей электрического заряда и за счет индукции, формирующий электродвижущую силу. Функцию якоря выполняет либо ротор, либо статор;
  • Щетки, деталь, являющаяся частью электрической цепи, посредством которой ток передаётся к якорю. Материал, из которого делают щётки, как правило, графит. Двигатель содержит минимум две щётки для «положительного» и «отрицательного» полюсов;
  • Коллектор, часть агрегата, контактирующая со щетками и распределяющая ток.

Название агрегата произошло благодаря наименованию узла ротора электродвигателя – коллектора. Визуально коллектор представляет собой деталь, в виде цилиндра, которая состоит из пластин меди, изолированных между собой.

Важно! Опытные пользователи знают, что для увеличения срока службы новой установки, обкатать коллекторный двигатель. Для этого в течение 10-15 минут агрегат работает на 15-20% мощности без нагрузки. Это позволит избежать прожигания коллектора и даст прирост мощности на уровне 10-15%.

Универсальный коллекторный двигатель.

Принцип работы коллекторного двигателя

Для того, что бы понять, как работает коллекторный двигатель, вспомним электромагнитную индукцию. Поместим на оси вращения проводник, с циркулирующим током внутри него, между магнитами, северный и южный полюс. Проводник вращается в направление движения тока, это принцип работы коллекторного двигателя. Питание проходит через щетки на конец проводника. Пол оборота, и происходит переключение тока, способствующее непрерывному вращению в заданном направлении. Коллекторный двигатель оборудован несколькими проводниками, поэтому окружность коллектора, делится на контакты.

От статора ток проходит к обмоткам ротора посредством последовательного соединения, щёток и коллектора. Коллекторные двигатели применяют в изделиях, где важна скорость вращения. Моторы не тяжёлые, с относительно небольшими габаритными размерами.

Принцип работы коллекторного двигателя.

Важно! Коллекторный двигатель, способен работать в обратном порядке, преобразовывать механическую энергию в электрическую энергию. В этом случае, роль установки — генератор.

Разновидности коллекторных двигателей

Для удобства восприятия в любой сфере существует классификация изделий по критериям, признакам, функциональности. Что касается коллекторных установок, классификация проходит по разным параметрам.

Схема универсального коллекторного двигателя.

При классификации по питанию:

  1. Универсальный коллекторный двигатель;
  2. Коллекторный агрегат (направление движения заряженных частиц в электрическом поле = const);
  • С индуктором на постоянных магнитах;
  • С индуктором на катушках возбуждения:
  • Катушка возбуждения (тип обмотки независимый);
  • Катушка возбуждения (тип обмотки параллельный);
  • Катушка возбуждения (тип обмотки последовательный);
  • Катушка возбуждения (тип обмотки смешанный).
Читайте также:  W211 e320 какой двигатель

Универсальный коллекторный агрегат.

Установки применяются в быту, коллекторный двигатель переменного тока 220в используется в бытовой технике. Мотор потребляет постоянный и переменный ток. Популярность в применении обусловлена реверсом, регулировкой скорости вращения, необходимостью частоты выше 3000 об./мин.

Применяя однофазный коллекторный двигатель переменного тока, обмотки статора и ротора соединяют последовательно или параллельно. Последний вариант соединения уже никто не делает. Универсальный однофазный коллекторный агрегат работает с переменным и постоянным током.

Недостатки универсального механизма:

  • Стоимость агрегата;
  • Сложность обслуживания;
  • Шумность работы, сложное управление, возникновение радиопомех;
  • Полезное действие ниже необходимого, если применяется источник переменного тока;
  • Износ щеток по причине образования искр.

Коллекторный агрегат (ток = const).

Индуктор на постоянных магнитах.

Конструктивное отличие от универсальной установки заключается в использовании магнитов, а не катушек возбуждения. Агрегат популярен и распространен в большей степени, чем остальные виды коллекторных установок. Положительный момент, это стоимость и простота конструкции. Кроме того, устройство легко в управлении. Камень преткновения, применяемые магниты, которые напрямую связаны с характеристиками мощности установки. На установку влияет образуемое магнитами поле.

Положительные аспекты Отрицательные аспекты
Значительный момент при незначительных оборотах;Широкий диапазон регулировок;Цена агрегата доступна потребителям. Невысокая мощность;Старение магнитов, потеря свойств.

Коллекторный двигатель с индуктором на постоянных магнитах.

Катушки возбуждения (независимая и параллельная)

Название типа получено как следствие независимого питания. Особенность, для возникновения момента питание индуктора и якоря должны отличаться, иначе ротор установки не будет крутиться.

Если нет возможности организовать подачу разного тока, то подключение делается параллельно. Оба типа одинаковы с точки зрения характеристик. Момент у силовых установок высокий (даже на низком вращении), рост частоты — момент уменьшается. Особенность: независимость катушки и якоря. Что бы агрегат вышел из строя, достаточно току, возбуждающему катушку, упасть до значения «0».

Схема независимого возбуждения:

Положительные аспекты Отрицательные аспекты
Отсутствие магнитов, поэтому время не влияет на работоспособность агрегата;Низкие обороты – высокий момент;Легкая регулировка, организовывается регулятором. Завышена цена, в сравнении с оппонентами;Падение тока катушки возбуждения ниже предельного значение чревато поломкой.

Схема параллельного возбуждения:

Обмотка возбуждения (тип последовательный)

Последовательность, предполагает равное значение тока. При токе статора, значением ниже расчётного, падает мощность потока магнитного. Рост нагрузки сопоставим росту мощности потока, до тех пор, пока не произойдёт выход на предельный уровень, когда рост тока не увеличивает поток магнитный.

Такая особенность не позволяет запускать двигатель, если расчётная нагрузка, ниже 25%. Сделав это, произойдёт резкое неконтролируемое увеличение частоты вращения. Особенность наложила отпечаток на использование агрегатов, однако, если мощность установки ниже 200Вт, возможно падение нагрузки, даже до холостого хода.

Положительные аспекты Отрицательные аспекты
Отсутствие магнитов, поэтому время не влияет на работоспособность агрегата;Значение момента высоко, при этом обороты незначительны. Стоимость завышена, оппоненты дешевле;Значение момента понижается с увеличением оборотов;Сложности в регулировке скоростью вращения агрегата;Эксплуатация без нагрузки ведёт к поломке агрегата.

Схема последовательного возбуждения.

Обмотка возбуждения (тип смешанный)

В таких агрегатах, установлено две катушки, подключены последовательно и параллельно. Первая носит статус основной за счет возможности применять большую силу магнетизма, вторая обладает статусом вспомогательной. Возможно подключение катушек встречным или согласованным методом. От выбранного подключения зависит, чему будет соответствовать интенсивность поля.

Подключить коллекторный двигатель можно, в случае надобности получения неизменной частоты, или увеличения оборотов при увеличении нагрузки.

Схема смешанного возбуждения.

Положительные аспекты Отрицательные аспекты
Отсутствие магнитов, поэтому время не влияет на работоспособность агрегата;Низкие обороты – высокий момент;Надёжность, хорошо переносит граничные нагрузки;Простое управление. Высокая стоимость.

Следующим шагом развития электрических двигателей стали бесколлекторные моторы. Отличие коллекторного двигателя от бесколлекторного, отсутствие у последнего, как коллектора, так и щеток. Функцию ротора в двигателе выполняют магниты, которые расположены вокруг вала, тут же расположены и обмотки. Положение ротора контролируется датчиком. Информация от датчика обрабатывается вычислителем. Агрегат обладает положительными аспектами, присущими установкам с коллектором, не обслуживается, единственный отрицательный аспект, это высокая стоимость.

Читайте также:  Как отремонтировать двигатель умз 4216

Источник

Коллекторный двигатель постоянного и переменного тока

В бытовом электрооборудовании, где используются электродвигатели, как правило, устанавливаются электромашины с механической коммутацией. Такой тип двигателей называют коллекторными (далее КД). Предлагаем рассмотреть различные виды таких устройств, их принцип действия и конструктивные особенности. Мы также расскажем о достоинствах и недостатках каждого из них, приведем примеры сферы применения.

Что такое коллекторный двигатель?

Под таким определением подразумевается электромашина, преобразовывающая электроэнергию в механическую, и наоборот. Конструкция устройства предполагает наличие хотя бы одной обмотки подсоединенной к коллектору (см. рис. 1).

Рисунок 1. Коллектор на роторе электродвигателя (отмечен красным)

В КД данный элемент конструкции используется для переключения обмоток и в качестве датчика, позволяющего определить положение якоря (ротора).

Виды КД

Классифицировать данные устройства принято по типу питания, в зависимости от этого различают две группы КД:

  1. Постоянного тока. Такие машины отличаются высоким пусковым моментом, плавным управлением частоты вращения и относительно простой конструкцией.
  2. Универсальные. Могут работать как от постоянного, так и переменного источника электроэнергии. Отличаются компактными размерами, невысокой стоимостью и простотой управления.

Первые, делятся на два подвида, в зависимости от организации индуктора он может быть на постоянных магнитах или специальных катушках возбуждения. Они служат для создания магнитного потока, необходимого для образования вращательного момента. КД, где используются катушки возбуждения, различают по типам обмоток, они могут быть:

  • независимыми;
  • параллельными;
  • последовательными;
  • смешанными.

Разобравшись с видами, рассмотрим каждый из них.

КД универсального типа

На рисунке ниже представлен внешний вид электромашины данного типа и ее основные элементы конструкции. Данное исполнение характерно практически для всех КД.

Конструкция универсального коллекторного двигателя

Обозначения:

  • А – механический коммутатор, его также называют коллектором, его функции были описаны выше.
  • В – щеткодержатели, служат для крепления щеток (как правило, из графита), через которые напряжение поступает на обмотки якоря.
  • С – Сердечник статора (набирается из пластин, материалом для которых служит электротехническая сталь).
  • D – Обмотки статора, данный узел относится к системе возбуждения (индуктору).
  • Е – Вал якоря.

У устройств данного типа, возбуждение может быть последовательным и параллельным, но поскольку последний вариант сейчас не производят, мы его не будем рассматривать. Что касается универсальных КД последовательного возбуждения, то типовая схема таких электромашин представлена ниже.

Схема универсального коллекторного двигателя

Универсальный КД может работать от переменного напряжения благодаря тому, что когда происходит смена полярности, ток в обмотках возбуждения и якоря также меняет направление. В результате этого вращательный момент не изменяет своего направления.

Особенности и область применения универсальных КД

Основные недостатки данного устройства проявляются при его подключении к источникам переменного напряжения, что отражается в следующем:

  • снижение КПД;
  • повышенное искрообразование в щеточно-коллекторном узле, и как следствие, его быстрый износ.

Ранее КД широко применялись, во многих бытовых электроприборах (инструмент, стиральные машины, пылесосы и т.д.). На текущий момент производители практически престали использовать данный тип двигателей отдав предпочтение безколлекторным электромашинам.

Теперь рассмотрим коллекторные электромашины, работающие от источников постоянного напряжения.

КД с индуктором на постоянных магнитах

Конструктивно такие электромашины отличаются от универсальных тем, что вместо катушек возбуждения используются постоянные магниты.

Конструкция коллекторного двигателя на постоянных магнитах и его схема

Этот вид КД получил наибольшее распространение по сравнению с другими электромашинами данного типа. Это объясняется невысокой стоимостью вследствие простоты конструкции, простым управлением скорости вращения (зависит от напряжения) и изменением его направления (достаточно изменить полярность). Мощность двигателя напрямую зависит от напряженности поля, создаваемого постоянными магнитами, что вносит определенные ограничения.

Основная сфера применения – маломощные приводы для различного оборудования, часто используется в детских игрушках.

КД на постоянных магнитах с игрушки времен СССР

К числу преимуществ можно отнести следующие качества:

  • высокий момент силы даже на низкой частоте оборотов;
  • динамичность управления;
  • низкая стоимость.

Основные недостатки:

  • малая мощность;
  • потеря магнитами своих свойств от перегрева или с течением времени.

Для устранения одного из основных недостатков данных устройств (старения магнитов) в системе возбуждения используются специальные обмотки, перейдем к рассмотрению таких КД.

Независимые и параллельные катушки возбуждения

Первые получили такое название вследствие того, что обмотки индуктора и якоря не подключаются друг к другу и запитываются отдельно (см. А на рис. 6).

Читайте также:  Какой двигатель подойдет для таврии

Рисунок 6. Схемы КД с независимой (А) и параллельной (В) обмоткой возбуждения

Особенность такого подключения заключается в том, что питание U и UK должны отличаться, в противном случае н возникнет момент силы. Если невозможно организовать такие условия, то катушки якоря и индуктора подключается параллельно (см. В на рис. 6). Оба вида КД обладают одинаковыми характеристиками, мы сочли возможным объединить их в одном разделе.

Момент силы у таких электромашин высокий при низкой частоте вращения и уменьшается при ее увеличении. Характерно, что токи якоря и катушки независимы, а общий ток является суммой токов, проходящих через эти обмотки. В результат этого, при падении тока катушки возбуждения до 0, КД с большой вероятностью выйдет из строя.

Сфера применения таких устройств – силовые установки с мощностью от 3 кВт.

Положительные черты:

  • отсутствие постоянных магнитов снимает проблему их выхода из строя с течением времени;
  • высокий момент силы на низкой частоте вращения;
  • простое и динамичное управление.

Минусы:

  • стоимость выше, чем у устройств на постоянных магнитах;
  • недопустимость падения тока ниже порогового значения на катушке возбуждения, поскольку это приведет к поломке.

Последовательная катушка возбуждения

Схема такого КД представлена на рисунке ниже.

Схема КД с последовательным возбуждением

Поскольку обмотки включены последовательно, то ток в них будет равным. В результате этого, когда ток в обмотке статора становится меньше, чем номинальный (это происходит при небольшой нагрузке), уменьшается мощность магнитного потока. Соответственно, когда нагрузка увеличивается, пропорционально увеличивается мощность потока, вплоть до полного насыщения магнитной системы, после чего эта зависимость нарушается. То есть, в дальнейшем рост тока в обмотке катушки якоря не приводит к увеличению магнитного потока.

Указанная выше особенность проявляется в том, что КД данного типа непозволительно запускать при нагрузке на четверть меньше номинальной. Это может привести к тому, что ротор электромашины резко увеличит частоту вращения, то есть, двигатель пойдет «в разнос». Соответственно, такая особенность вносит ограничения на сферу применения, например, в механизмах с ременной передачей. Это связано с тем, что при ее обрыве электромашина начинает работать в холостом режиме.

Указанная особенность не распространяется на устройства, чья мощность менее 200 Вт, для них допустимы падения нагрузки вплоть до холостого режима работы.

Преимущества КД с последовательной катушкой, такие же, как у предыдущей модели, за исключением простоты и динамичности управления. Что касается минусов, то к ним следует отнести:

  • высокую стоимость в сравнении с аналогами на постоянных магнитах;
  • низкий уровень момента силы при высокой частоте оборотов;
  • поскольку обмотки статора и возбуждения подключены последовательно, возникают проблемы с управлением скоростью вращения;
  • работа без нагрузки приводит к поломке КД.

Смешанные катушки возбуждения

Как видно из схемы, представленной на рисунке ниже, индуктор на КД данного типа обладает двумя катушками, подключенных последовательно и параллельно обмотке ротора.

Схема КД со смешанными катушками возбуждения

Как правило, одна из катушек обладает большей намагничивающей силой, поэтому она считается, как основная, соответственно, вторая – дополнительная (вспомогательная). Допускается встречное и согласованное включение катушек, в зависимости от этого интенсивность магнитного потока соответствует разности или сумме магнитных сил каждой обмотки.

При встречном включении характеристики КД становятся близкими к соответствующим показателям электромашин с последовательным или параллельным возбуждением (в зависимости от того, какая из катушек является основной). То есть, такое включение актуально, если необходимо получить результат в виде неизменной частоты оборотов или их увеличению при возрастании нагрузки.

Согласованное включение приводит к тому, что характеристики КД будут соответствовать среднему значению показателями электромашин с параллельными и последовательными катушками возбуждения.

Единственный недостаток такой конструкции – самая высокая стоимость в сравнении с другими типами КД. Цена оправдывается благодаря следующими положительными качествами:

  • не устаревают магниты, за отсутствием таковых;
  • малая вероятность выхода из строя при нештатных режимах работы;
  • высокий момент силы на низкой частоте вращения;
  • простое и динамичное управление.

Источник

Adblock
detector