Что такое кгс двигателя

Килограмм-сила — Kilogram-force

килограмм-сила
Система единиц Гравитационная метрическая система
Единица Сила
Символ кгс
Конверсии
1 кгс в . . равно .
Единицы СИ 9.806650 с.ш.
Единицы CGS 980 665,0 дин
Британские гравитационные единицы 2,204623 фунта-силы
Абсолютные английские единицы 70.93164 pdl

Кгс ( кгс или кг F ), или kilopond ( кф , от латинского : Pondus , лит «вес»), является нестандартной гравитационной метрической единицей силы . Она равна величине силы , действующей на один килограмм из массы в 9.806 65 м / с 2 гравитационное поле ( стандартная сила тяжести , условное значение, приближающееся к средней величине силы тяжести на Земле). То есть это вес килограмма при стандартной гравитации. Следовательно, один килограмм-сила по определению равен 9,806 65 Н . Точно так же грамм-сила равна 9.806 65 мН , а миллиграмм-сила равна 9.806 65 мкН .

Килограмм-сила является нестандартной единицей и классифицируется в Международной системе единиц (СИ) как единица, не принимаемая для использования с СИ.

Содержание

История

Грамм-сила и килограмм-сила никогда не были четко определенными единицами до тех пор, пока CGPM не принял для этой цели стандартное ускорение свободного падения 9,80665 м / с 2 в 1901 году, хотя до этого времени они использовались в измерениях силы с низкой точностью. . Килограмм-сила никогда не был частью Международной системы единиц (СИ), которая была введена в 1960 году. Единицей силы в системе СИ является ньютон .

До этого устройство широко использовалось во многих странах мира и до сих пор используется для некоторых целей, например, для натяжения велосипедных спиц , для неофициальных ссылок на давление в килограммах на квадратный сантиметр (1 кгс / см 2 ), которая является технической атмосферой (at) и очень близкой к 1 бар и стандартной атмосфере (атм), для натяжения луков при стрельбе из лука, и для определения « метрической лошадиных сил » (PS) как 75 метров-килопондов в секунду. Кроме того, килограмм силы был стандартной единицей измерения твердости по Виккерсу .

Три подхода к метрическим единицам массы и силы или веса

Основание

Сила Вес Масса
2-й закон движения m = F / а F = Wa / г F = ma
Система GM M CGS МТС SI
Ускорение ( а ) м / с 2 м / с 2 Гал м / с 2 м / с 2
Масса ( м ) хил килограмм грамм тонна килограмм
Сила ( F ),
вес ( W )
килопонд килопонд Дайн Sthène ньютон
Давление ( p ) техническая атмосфера атмосфера Барье пьеса паскаль

В 1940-х годах в Германии тяга ракетного двигателя измерялась в килограммах-силе, в Советском Союзе он оставался основной единицей тяги в российской космической программе, по крайней мере, до конца 1980-х годов.

Термин «килопонд» признан устаревшим.

Связанные единицы

Тонна сила , метрическая тонна сила , мегаграммы силы , и megapond ( Мр ) каждый 1000 кгс.

Decanewton или dekanewton ( даН ), ровно 10 Н, используется в некоторых областях , как приближение к кгс, потому что она близка к 9.80665 N 1 кгс.

Источник

Ликбез по физике (4). Тяга и удельный импульс ракетных двигателей

Внимательное, вдумчивое прочтение этой статьи поможет разобраться с многими проблемами современной школьной физики а также поможет в решении задач с вертолётами.

Петр Иванович Дубровский, добросовестный инженер – исследователь, честный и непредвзятый частный научный детектив.

Остолопов прошу не беспокоить меня и нормальных читателей тупыми комментами и своим бестолковым блеянием. Тупые комментарии буду просто стирать, а их бестолковых авторов — банить.

Напомню основные принципы обучения, высказанные умными людьми. Аристипп Киренейский: «Детей надо учить тому, что пригодится им, когда они вырастут» . Академик АН СССР Г.С. Ландсберг, главный редактор многократно переиздаваемого «Элементарного учебника физики»: » Преподавание в средней школе, как, впрочем, и всякое иное преподавание, не может быть, конечно, исчерпываю­щим. Однако его необходимо строить таким образом, чтобы в дальнейшем учащийся мог и должен был бы доучиваться, но никогда не был бы вынужден переучиваться . «

Однако, преподавание физики в современной школе осуществляется ВОПРЕКИ этим двум основным принципам обучения. Детям вдалбливают представления о мироустройстве, о физических законах на уровне представлений, ошибок и заблуждений XVII. XVIII веков. Я не хочу сказать, что всё, привнесённое учёными того времени в физику, было целиком и полностью ошибками и заблуждениями, вовсе нет. Взять, к примеру, три закона Ньютона, на которых и выстроена вся праильная физика. Но многие теории требуют немедленного пересмотра — например, пора отказаться от понимания энергии, предложенного Лейбницем * (mgh и mV^2/2)

*Там длинная статья, не для куриных мозгов. В принципе, все обоснования отказа от энергии, придуманной Готтфридом Лейбницем, и соответственно, от закона сохранения этой лейбницевской энергии, уже имеются в других моих статьях на этом канале «Не верь стереотипам». Перечень этих статей можно найти тут .

Как я говорил, мы (человечество) уже двадцать лет тому назад шагнули в новое тысячелетие, в конце XVII — начале XVIII века изобрели паровые двигатели, потом заменили их на более совершенные двигатели внутреннего сгорания, построили сотни миллионов автомобилей, причем в некоторых особо развитых странах, число автомобилей, мощность каждого из которых измеряется десятками и сотнями лошадиных сил, уже сравнивается с числом жителей. Мы покорили небо — самолётами и вертолётами, так что перелёт из одной страны в другую стал более обыденной вещью, чем в XIX веке переезд дворянской семьи на лето из города в поместье. Более того — 60 лет тому назад мы шагнули в космос. Но в школах до сих пор преподают физику на уровне, когда качестве тяги использовали людей, ослов и лошадей.

В школах до сих пор учат, что:

Работа равна: A = F S cosα

Мощность равна : N = A / t

КПД равен = А_полезная / Е_затраченная

Можно ли с помощью этих формул определить работу, совершаемую реактивными ракетными двигателями? Определить их мощность? Определить их КПД? Смотрим на рис. 1. Предположим, что у нас есть две ракеты, одна из которых «стоит на столбе» пламени изрыгаемого реактивным ракетным двигателем, а другая, уже набрав к этом моменту некоторую скорость, продолжает равномерно подниматься вверх.:

Может быть, попросим помощи для решения этой простой задачи у академических дедушек из ОФН РАН, у чиновников из Министерств просвещения, а также высшего образования и науки, у школьных учителей физики, наконец?

Не обижайтесь. Придурков, которые начнут писать тупые посты в стиле «а как же разрабатывали и строили ракеты до этого?» я буду сразу банить.

Что мне нравится у ракетчиков — они будто бы позабыли про все те глупости, которыми их пичкали в школе. Если мы посмотрим на характеристики ракеты-носителя, то там мы не увидим ни мощности двигателей (напомню, что, согласно школьных учебников, мощность — это работа. выполняемая в единицу времени), ни коэффициентов полезного действия, ни тем более «положительной и отрицательной работы», существование которых проповедовали остолопы-теоретики Ландау и Лифшиц, или одной из последних глупостей, изобретенных остолопами-теоретиками — «мощности силы»**

**Если кто знает автора этой беспросветной глупости, автора этой невероятной чуши, кто первым занёс этот вопиющий идиотизм в физику, расскажите мне, пожалуйста.

Давайте посмотрим на ТТХ (тактико-технические характеристики) любой ракеты-носителя. Возьмём, к примеру, «Ангару -1.2ПП»:

Вы где-нибудь видите среди ТТХ мощность? КПД? Или, боже упаси, «мощность силы»? Нет, мы видим лишь ТЯГУ, которая с успехом заменяет ракетчикам мощность, причем она различная на уровне моря и в вакууме — по причине разницы внешнего давления, видим УДЕЛЬНЫЙ ИМПУЛЬС — это показатель эффективности двигателя, что-то вроде КПД и видим ВРЕМЯ РАБОТЫ ДВИГАТЕЛЯ, которое помогает рассчитать весь импульс силы, необходимый для вывода космического корабля на орбиту Земли. Ведь поднимает ракету в небо, в космос, не энергия, придуманная 3,5 века тому назад Лейбницем, а импульс силы, на основании второго закона Ньютона, которому, как ни странно, тоже 3,5 века: Δ(mV) = ∫ F(t) dt — это второй закон Ньютона в дифференциальной форме. Масса m и скорость ракеты V, а также тяга маршевых двигателей постоянно меняются — и в этом есть некоторая сложность расчётов космических стартов. На самом деле надо еще учитывать плотность атмосферного воздуха, его сопротивление движению ракеты, даже географическую широту, с которой стартует ракета, но это уже «высший пилотаж», которым мы не будем забивать пока головы — важно понять основы.

Давайте посмотрим ТТХ реактивного ракетного двигателя РД-191, применяемого в первой ступени этой ракеты-носителя.

Давайте сначала остановимся на ТЯГЕ — то есть той самой движущей силе, которая и отправляет ракеты в космос.

Заглянем в гости к барышне Вики — так как в освоении космоса Россия, со времён СССР, впереди планеты всей, то разумеется, русскоязычной Вики доверия в «космических вопросах» больше всего:

И что же мы тут видим?

То есть F = V_eff * dm/dt

Или же, в более понятной форме: F * dt = V_eff * dm из которого и получаем Δ(mV_eff) = ∫ F(t) dt

Второй закон Ньютона РУЛИТ .

То есть — энергия ракетного топлива (пропелланта, состоящего из керосина РГ-1 и жидкого кислорода) тратится на создание требуемой тяги, подъёмной силы в течение определенного времени — то есть на создание импульса силы, который и позволит выполнить ПОЛЕЗНУЮ работу по запуску на орбиту Земли нового спутинка или космического корабля.

А что с энергией имени Лейбница? Где же она? Если сказать честно , то — в полной ж. — взять, к примеру, расчёт этих «лейбницевских энергий» по телеметрии старта ракеты Falcon-9 . Но тем не менее, эту дурь насчёт mgh и mV^2/2 продолжают чуть ли молотком вдалбливать в головёнки несчастных школьников.

Что же такое УДЕЛЬНАЯ ТЯГА, вернее правильно называть эту величину УДЕЛЬНЫЙ ИМПУЛЬС двигателя?

Удельный импульс — это как раз и есть показатель ЭФФЕКТИВНОСТИ реактивного ракетного двигателя в чистом виде. Он показывает, сколько пропелланта, т.е. ракетного топлива надо сжечь, чтобы создать единичную движущую силу (1 ньютон или 1 кГс) в течение единицы времени (1 секунда). Вопрос для проверки усвоения: допустим имеются три реактивных двигателя. Один, затрачивая 1 грамм топлива, может создавать движущую силу в 1 Н в течение 1 секунды, другой, затрачивая 1 грамм того же самого топлива, может создавать движущую силу в 2 Н в течение одной секунды, третий — затрачивая 1 грамм того же топлива может создавать движущую силу 0,5 Н в течение 5 секунд. Какой из этих двигателей самый эффективный? Другими словами, какой из этих двигателей имеет самый высокий КПД?

Теперь скажите мне — разве такие объяснения не будут понятны школьникам 10. 11 классов? Или даже в 8 и 9 -ом?

Единственное, что мне не нравится, это измерение УДЕЛЬНОГО ИМПУЛЬСА в секундах. Этим замыливается смысл удельного импульса — обычно это МАССОВЫЙ расход топлива на создание единичного импульса. То есть единица измерения удельного импульса должна быть:

кГс * c / г (полученный импульс движущей силы делим на кол-во израсходованного топлива)

или, в системе Си:

В справочниках, которые мне попадались под руку, речь идёт о МАССОВОМ, а не ВЕСОВОМ удельном расходе топлива. Возможно, для расчётов космических стартов удобнее пользоваться весовым удельным расходом топлива, в этом случае мы получаем единицу измерения весового удельного расхода топлива в системе Си:

H * с / H = с , но, как я уже сказал, в этом случае замыливается физическая суть удельного импульса и я бы рекомендовал даже весовой удельный импульс силы измерять в Н * с / Н . Пускай эта единица измерения и выглядит слегка противоестественно, то в данном случае становится сразу же понятно, что речь идёт о ВЕСОВОМ удельном импульсе движущей силы, а не о времени.

Ликбез, то есть урок закончил. Продолжение следует.

Источник

Как пересчитать КГС в лошадиные силы?

Основные единицы измерения мощности двигателей и их обозначение

1. Лошадиная сила (735,49875 Вт) . Обозначается как: hp (это netto мощность двигателя, замеряется с использованием вспомогательных агрегатов двигателя, таких как: глушитель, генератор) , bhp (это брутто мощность двигателя, замеряется без использования дополнительных агрегатов) .
Также можно встретить и другие обозначения: PS (нем.) , CV (фр.) , pk (нид.) .

В англоязычных странах чаще до сих пор приравнивают лошадиные силы к 745,6999 Вт, что примерно равно 1,014 европейской лошадиной силы.

2. Ватт (1,36 л. с.) .
Как рассчитывается лошадиная силаЛошадиная сила является условной и неоднозначной единицей измерения мощности.

В России и почти во всех европейских странах, лошадиная сила определяется как 75 кг*м/с (метрическая лошадиная сила) , то есть, как мощность, достаточная для поднятия груза массой в 75 кг на высоту 1 метр за 1 секунду. В таком случае 1 л. с. составляет ровно 735,49875 Вт.

Максимальную мощность, которую способна развивать лошадь, принято называть котловой лошадиной силой. Вы можете с легкостью рассчитать и свою максимальную мощность. Для этого нужно замерить время t, за которое вы вбежите на лестницу высотой h и подставить в формулу: m*h/t, где m – масса вашего тела.

Для определения мощности двигателя используются специальные стенды, подробнее об этом написано ниже.

Как замеряют мощность двигателя

Мощность двигателя замеряют в основном для оценки эффективности тюнинга.

Для определения мощности двигателя существует только один точный способ: снять его с автомобиля и установить на специальный стенд. Снятие и установка двигателя – довольно трудозатратный и дорогой процесс, который по силам только автопроизводителям и серьезным гоночным командам.

Для менее точного замера мощности используют динамометрические мощностные стенды (такие как на фото слева) , позволяющие снять показания “с колес”. Влияние на результат могут оказать: давление в шинах, их сцепные свойства, температура шин (во время замера протектор сильно нагревается) и даже степень притяжки автомобиля страховочными стропами.

Методика замера:
Прогретый автомобиль трогается на первой передаче, разгоняется до 40—50 км/ч, после чего включается последняя передача, педаль газа нажимается до упора и начинается имитация разгона. По достижении максимальных оборотов (с момента начала падения мощности, видимого на мониторе) , включается нейтральная передача.

Результат измерения выводится в виде графика, на котором отображена зависимость мощности от оборотов двигателя (синяя кривая – в лошадиных силах) .

Для того, чтобы иметь представление о диапазоне мощности двигателей, ознакомьтесь со следующим

0-100 л. с. – малолитражные автомобили;
100-200 л. с. – автомобили с двигателем средней мощности;
200-500 л. с. – спортивные автомобили;
500 л. с. и более – гоночные болиды и суперкары.

Источник

Читайте также:  Сколько весит двигатель ямз 236 без коробки