Что такое картер двигателя на судне

Что такое картер двигателя на судне

Главное меню

Судовые двигатели

Станину устанавливают на фундаментной раме, она служит опорой для цилиндров. Совместно с фундаментной рамой станина образует закрытую полость для движения кривошипно-шатупного механизма. В зависимости от конструкции двигателя станины мо­гут быть выполнены в виде отдельных колонн или стоек — для крейцкопфных двигателей большой мощности либо закрытого типа — для тронковых двигателей. Станина должна обладать до­статочной прочностью, жесткостью и герметичностью для паров масла и газов. Станины выполняют литыми чугунными (СЧ18-36, СЧ21-40, СЧ28-48) или стальными, а для уменьшения веса свар­ными стальными. Станины небольших быстроходных двигателей изготовляют из алюминиевых сплавов ( A Л4, АЛ5).

На рис. 131 показана А-образная станина крупного крейцкопфного двигателя. А-образные стойки выполняют коробчатого или двутаврового сечения, устанавливают в плоскости сечения рамовых подшипников на фундаментную раму, а вверху соединяют с бло­ком цилиндров. Пролеты между стойками герметически закры­ваются съемными щитами, в которых имеются люки для осмотра кривошипно-шатунного механизма. К стойкам на специальных приливах крепят параллели крейцкопфа.

На рис. 132 показана литая станина четырехцилиндрового тронкового двигателя. Фланцем 3 станину устанавливают на фун­даментную раму и соединяют с ней болтами; на верхнюю пло­скость 1 станины устанавливают цилиндры. Люки 2, закрываемые съемными щитами, обеспечивают доступ в кривошипно-шатунную полость станины. В последнее время для троиковых двигателей широко применяют станины, отлитые вместе с рубашками цилинд­ров или с фундаментной рамой.

При работе двигателя в картер могут прорываться газы из цилиндров, которые вместе с парами масла образуют взрывоопас­ную смесь. Во избежание взрыва на картере располагают предо­хранительный клапан 1 (рис. 133) с уплотнительным кольцом 2.

Источник

СУДОРЕМОНТ ОТ А ДО Я.

В своем блоге буду описывать основы технологии судоремонта, методы дефектоскопии, восстановления и упрочнения деталей, виды и методы ремонта судов и механизмов.Будет приведена технологическая документация на ремонт и изготовление деталей.

Оглавление

Остов ДВС.

Остов ДВС состоит из следующих основных деталей: фундаментной рамы, станины, рабочих цилиндров и цилиндровых крышек. Все эти детали при помощи болтов и шпилек плотно соединяются между собой, образуя прочную и жесткую конструкцию, воспринимающую нагрузку от массы двигателя и усилия от давления газов, передаваемые через движущиеся детали.
Фундаментная рама служит основанием двигателя, на котором устанавливается станина. Она представляет собой опору для рамовых подшипников, на которые укладывается коленчатый вал двигателя. Рама должна выполняться герметичной, так как служит емкостью (картером) для масла, стекающего из системы смазки и охлаждения поршней. Фундаментные рамы в зависимости от их конструкции, технологии изготовления и применяемого материала могут быть цельными или составными, литыми или сварными, чугунными, стальными или из легких сплавов.
Фундаментные рамы судовых ДВС отливаются в основном из серого чугуна. Однако в последнее время нередко применяют стальные сварные конструкции. Рамы длиной более 4— 5 м изготавливают составными из нескольких частей, жестко соединяемых между собой болтами.

На рисунке показана цельная литая чугунная фундаментная рама 4 четырехцилиндрового двигателя, состоящая из двух продольных 6 и пяти поперечных 3 балок. Крепление рамы к судовому фундаменту осуществляется при помощи полок 5, имеющих отверстия для отжимных и крепежных болтов, часть из которых изготавливается калиброванными (призонными). Призонные болты фиксируют раму на фундаменте в строго определенном положении. Рама двигателя устанавливается на судовой фундамент на клиньях, планках и сферических прокладках.
В поперечных балках фундаментной рамы, которые подкрепляются ребрами жесткости, расположены постели для вкладышей рамовых подшипников 2, закрытых крышками 1.
Крышки крепятся к поперечным балкам при помощи шпилек. Снизу фундаментная рама имеет поддон, вместе с поперечными балками образующий отсеки (колодцы), соединенные между собой (для перетока масла). Внутренние полости отсеков отделяются от поддона сетками. Для уменьшения массы рамы поддон изготавливают отдельно из листовой стали толщиной 2—3 мм и прикрепляют к ней болтами или при помощи сварки.
В настоящее время большинство главных двигателей выполняются с сухим картером, а маслосборная цистерна для циркуляционного масла располагается под ним.
Для снижения вредного действия вибрации и уменьшения шума во время работы вспомогательные ДВС часто устанавливают на фундаменте с помощью пружинных или резино-металлических амортизаторов.
Рамовые подшипники служат опорой коленчатого вала и воспринимают усилия, передаваемые шатуном фундаментной раме. Рамовый подшипник показан на рисунке:

Он состоит из верхнего 6 и нижнего 8 вкладышей, залитых антифрикционным сплавом 3 (баббитом Б83). Нижний вкладыш устанавливается в постели, расположенной в фундаментной раме 9, верхний — в крышке 4, крепящейся к раме при помощи шпилек 7 с гайками, которые после затяжки должны быть зашплинтованы. Оба вкладыша имеют заплечики 1, предотвращающие их перемещение в осевом направлении. Между торцами верхнего и нижнего вкладышей устанавливается набор латунных прокладок 2 разной толщины, предназначенных для установки и регулирования зазора между вкладышами и шейкой коленчатого вала. Смазочное масло к рамовому подшипнику подводится по трубке и штуцеру 5, который ввинчивается в крышку 4. Нижним концом штуцер входит в отверстие верхнего вкладыша, тем самым предохраняя его от проворачивания в постели.
Существуют и другие стопорные приспособления от проворачивания вкладышей подшипников. При отсутствии специального упорного подшипника один из рамовых, обычно ближайший к маховику, выполняет его функции. Он называется установочным и предотвращает осевое перемещение коленчатого вала. Длина этого вкладыша равна длине рамовой шейки. Остальные рамовые вкладыши делаются несколько короче для обеспечения беспрепятственного удлинения коленчатого вала при его нагревании. Торцевые поверхности установочного подшипника являются упорными и залиты антифрикционным сплавом. В качестве антифрикционного материала для наплавки вкладышей подшипников, кроме баббита, используется свинцовистая бронза и некоторые другие сплавы на основе алюминия и др.
Наиболее широко в судовых двигателях используются баббиты. Но они надежно работают при сравнительно небольших удельных давлениях (до 20 МПа) и невысоких температурах нагрева (до 100 С). Подшипники из свинцовистой бронзы выдерживают удельные давления до 50 МПа и нагрев до 200 С. Недостатком этих подшипников является плохая их приработка, поэтому необходима точная обработка вкладышей и тщательная их установка. Шейки коленчатого вала должны иметь поверхностную закалку, чего не требуется при заливке вкладышей баббитом.
Станина служит опорой для цилиндров двигателя, скрепляет их в одну жесткую конструкцию и образует закрытую камеру для кривошипно-шатунного механизма. В крейцкопфных двигателях станина, кроме того, воспринимает давление газов через параллели. В зависимости от конструкции и технологии изготовления станины бывают цельные или составные, литые или сварные. Материалом для изготовления станин служит в основном чугун или сталь.
Станины в судовых двигателях применяются двух основных типов: в виде отдельных колонн или стоек, закрытых съемными щитами и люками, и в виде закрытой коробки (картерный тип). Станины первого типа используются в тихоходных судовых крейцкопфных двигателях большой мощности. При такой конструкции литые чугунные колонны располагаются над каждым рамовым подшипником в плоскости, параллельной движению кривошипов, и крепятся внизу к общей фундаментной раме.
Конструкция станины в виде колонн удобна для осмотра и разборки деталей движения и подшипников ДВС. В двигателях тронкового типа станины для увеличения жесткости выполняют в виде коробок, представляющих собой цельную отливку для всех цилиндров. В двигателях малой и средней мощности широко применяется блок-картер, отливаемый заодно с рубашками цилиндров, или общий блок картера с фундаментной рамой. Во время работы двигателя станина и цилиндры (блоки цилиндров) испытывают действие растягивающих усилий в результате давления газов на крышки цилиндров. Для разгрузки этих деталей от растягивающих усилий используют анкерные связи, изготавливаемые из высокосортной стали.
Анкерные связи:

Читайте также:  Что понадобиться переборки двигателя

Длинные анкерные связи 1, имеющие резьбу на обоих концах, проходят через отверстия в фундаментной раме 4, станине 3 и цилиндре (блоке цилиндров) 2. Анкерные связи стягивают эти детали при помощи гаек, которые после затяжки шплинтуются.
Рабочие цилиндры являются очень ответственной деталью двигателя. В них совершаются рабочие циклы, в течение которых давление и температура газов изменяются в широких пределах.
Цилиндры судовых двигателей состоят, как правило, из внутренней части (рабочей втулки) и наружной рубашки. Между рабочей втулкой и рубашкой образуется полость, служащая для постоянной циркуляции охлаждающей воды во время работы двигателя. Она называется зарубашечным пространством. Цилиндры двигателей могут быть отлиты и установлены на станину каждый отдельно или в виде одной общей отливки, образующей цилиндровый блок, что значительно повышает жесткость конструкции, одновременно уменьшая ее массу. Одиночные цилиндры применяются сравнительно редко, главным образом в тихоходных двухтактных ДВС большой мощности.
В настоящее время в судовых двигателях наиболее часто используется блочная конструкция цилиндров. Для облегчения изготовления блок цилиндров может быть выполнен из нескольких частей, которые при сборке двигателя жестко соединяются между собой. Рубашки или блоки четырехтактных двигателей отличаются от блоков двухтактных тем, что последние имеют полости для подвода продувочного воздуха и отвода отработавших газов.
Цилиндр тихоходного двухтактного ДВС с прямоточной клапанной продувкой показан на рисунке:

В рубашке 1 установлена съемная рабочая втулка 2, которая своим верхним фланцем плотно садится на кольцевой выступ рубашки, а нижней частью входит в ее отверстие. Для предотвращения попадания охлаждающей воды в картер двигателя в нижней части рабочей втулки с наружной стороны устанавливают уплотнительные резиновые кольца 10. Подача смазочного масла в цилиндры осуществляется по штуцерам 8, которых может быть от двух до восьми. Продувка цилиндра осуществляется через окна 9, а удаление отработавших газов производится через выпускной клапан, установленный в отверстии 4 крышки цилиндра. Осмотр и очистка зарубашечного пространства от осадков и накипи производится через отверстия (с люками) 3.
В нижней части рубашки цилиндра находится отверстие для подвода охлаждающей воды в зарубашечное пространство, поступающей через выходной канал 7 и переливной патрубок 6 в полость охлаждения 5 крышки цилиндра и далее в отливной трубопровод.
Рабочие втулки, непосредственно соприкасающиеся с охлаждаемой водой, называются мокрыми. Сухие втулки (не соприкасающиеся с водой) в судовых двигателях не применяются.

На рисунке показан цилиндр четырехтактного ДВС, состоящий из рубашки 1 и съемной рабочей втулки 2, опирающейся своим буртиком (верхним фланцем) 9 на выточку в верхней части рубашки. Положение рабочей втулки в нижней части фиксируется направляющим пояском 5. Между ним и втулкой устанавливаются уплотнительные резиновые кольца 6 круглого сечения, предотвращающие попадание воды в картер. Рубашка цилиндра имеет фланец 4 для крепления к станине, горловины 7 для осмотра и очистки зарубашечного пространства, а также отверстия 3 и 8 для подвода охлаждающей воды в зарубашечное пространство и отвода ее в полость охлаждения крышки цилиндра.
Материалом для изготовления рубашек отдельных цилиндров и блоков цилиндров служит серый и легированные чугуны, литая сталь и алюминиевые сплавы. Рабочие втулки изготавливаются из легированного чугуна и реже отливаются из стали. Внутреннюю часть рабочей втулки шлифуют до зеркального блеска и подвергают специальной обработке. На зеркало чугунной втулки часто наносят тонкий слой хрома, а зеркало стальной — цементируют, азотируют или закаливают токами высокой частоты.
Крышки рабочих цилиндров служат для плотного их закрытия и образования над поршнем камер сгорания. Они изготовляются отдельно для каждого цилиндра или в виде блока (для быстроходных двигателей малой мощности). Материалом для изготовления крышек служит в основном высококачественный чугун, реже сталь и легкие сплавы. На крышке четырехтактного двигателя устанавливаются форсунка, впускной, выпускной, пусковой и предохранительный клапаны и стойки осей клапанных рычагов. Крышка двухтактного двигателя проще по конструкции, так как на ней размещаются лишь форсунка, пусковой и предохранительный клапаны. Исключение составляют двухтактные двигатели с прямоточной клапанной продувкой, на крышках которых дополнительно устанавливается выпускной клапан.
Внутри крышки имеются полости для циркуляции охлаждающей воды и отверстия для ее подвода и отвода. По форме крышки бывают квадратные, шести- или восьмиугольные, но наиболее часто применяются цилиндрические. К цилиндрам (или блокам) они крепятся шпильками, проходящими через специальные отверстия в крышках.

Читайте также:  Что нужно оформить при замене двигателя

Источник

Что собой представляет картер, зачем он нужен двигателю и из каких материалов изготавливается

Достаточно много внимания уделяется ремонту и обслуживанию различных компонентов двигателя. Причём очень часто при обсуждении всех этих вопросов звучит такое понятие как картер.

Но оказывается, что далеко не все знают значение этого элемента конструкции двигателя. Многие автомобилисты не могут ответить, что это и зачем используется в автомобилях.

Хотя по факту любое транспортное средство, оснащённое двигателем внутреннего сгорания, комплектуется картером. Он считается одним из главных компонентов силовой установки, несмотря на то, что является неподвижным элементом.

Что это

Часто можно встретить ситуации, когда картером называют поддоны двигателя, где скапливается всё смазочное масло для мотора, коробки передач и пр. Но картер в действительности не является синонимом поддона.

Правильно называть картером нижнюю часть блока цилиндров, если говорить применительно к классическим силовым установкам, а не касаться радиальных, лежачих, оппозитных и прочих не совсем стандартных двигателей. В картере предусмотрена специальная полость, которая предназначена для размещения внутри неё важного и необходимого кривошипно-шатунного механизма, то есть КШМ.

А вот поддон выступает в качестве ёмкости для моторного масла. Он имеет непосредственное отношение к картеру, поскольку поддон крепится к нему в нижней части.

У картера предусмотрено условное разделение на верхнюю и нижнюю часть. Как раз в нижнем отсеке картера располагается закреплённый поддон, где скапливается моторная смазка в периоды, пока двигатель не запущен.

Справедливо называть картер основным элементом корпуса силового агрегата. Внутреннее пространство изолировано, что позволяет создавать наиболее объёмную полость в моторе. Внутри картера находится коленвал, а верхняя часть служит для размещения блока цилиндров.

То есть фактически поддон-картер можно считать корпусом ДВС, в состав которого входит масляный поддон.

Расположение и назначение

Разобравшись в том, что такое картер для автомобиля, можно немного уделить внимание вопросам его размещения и функционального назначения.

Начнём с того, где именно находятся картеры силовых установок. Они располагаются там же, где и сам двигатель, поскольку являются его составной и неотъемлемой частью.

Картер выступает в качестве пространства между поддоном и коленвалом двигателя. Именно внутри этого пространства располагается кривошипно-шатунный механизм и осуществляет своё движение. По факту такой элемент как поддон-картер двигателя находится в моторе. То есть вопрос о том, где он находится, не совсем корректный.

Поскольку в картере имеется расположенная для сбора масла ёмкость (поддон), очень часто оба элемента описывают одним понятием. Но в действительности поддон выступает составной частью рассматриваемой конструкции.

Немного истории

Появлению такого незаменимого конструктивного элемента двигателя мы обязаны американскому инженеру. Именно в его честь была названа деталь, поскольку специалиста звали Харрисон Картер.

Свою идею инженер реализовал очень давно. Произошло это в далёком 1889 году.

Но самое интересное здесь то, что изначально задумка Харрисона не имела совершенно никакого отношения к автомобильным двигателям. Тогда он создавал ёмкость, которая наполнялась смазочным материалом, сугубо для использования на обычных велосипедах.

За счёт резервуара, в котором можно было хранить смазку, цепь велосипеда постоянно находилась в смазочной жидкости. Тем самым повышалась эффективность и работоспособность механизма.

А поскольку ёмкость была закрытой, то резервуар, в результате называющийся картером, защищал цепь велотранспорта от проникновения в неё различных загрязнений, мусора и влаги.

Уже через некоторое время идею Картера позаимствовали автомобильные инженеры. Так начали появляться машины с закрытым защитным резервуаром. Постепенно конструкцию совершенствовали и дорабатывали. Но сама идея и основа была взята от защиты для велосипедной цепи.

Вот такое оригинальное изобретение своего времени оставило огромный след во всей автомобильной промышленности.

Устройство и используемые материалы

Картеры принято классифицировать по их способы установки на блок цилиндров. Но также не стоит забывать о различия в устройстве и используемых материалах.

Чаще всего встречаются конструкции, изготовленные на основе алюминиевого сплава и нержавеющей стали. Крайне редко, и скорее на старых автомобилях, используются чугунные изделия. Хотя раньше чугун активно применяли при производстве автомобильных картеров и поддонов.

Но чугун утратил свою актуальность. Причина в слишком большой массе получаемой конструкции. Потому было принято решение перейти на более легковесные элементы из сплавов.

Одним только металлом ассортимент картеров не ограничивается. Всё чаще на современных автомобилях, особенно европейского производства, устанавливаются пластиковые детали. Только не стоит воспринимать такие элементы как крайне хрупкие и ломкие, что характерно для обычного пластика.

Для поддонов применяют специальные полимерные составы, которые отличаются повышенной прочностью, устойчивостью к высоким температурам и механическим повреждениям. Но без дополнительной защиты эксплуатировать машины с пластиковыми картерами в условиях бездорожья или при плохих дорогах не рекомендуется. Придётся хорошо постараться, чтобы повредить даже полимерный поддон. Но всё же вероятность есть.

Что же касается устройства, то тут нет ничего сложного. Учитывается внешний вид конструкции. На большинстве автотранспортных средств такой элемент как поддон-картер выполнен в виде резервуара или ёмкости прямоугольной формы сравнительно небольшого размера. Также зачастую его цвет чёрный.

Чтобы обеспечить дополнительную защиту для автомобильного установленного картера, его закрывают листами из металла или специального ударопрочного пластика. Именно такие листы называются защитой картера.

Читайте также:  Как работает управляющая форсунка в дизельном двигателе

В некоторых конструкциях поддон-картеров предусмотрены так называемые рёбра жёсткости. Если они и присутствуют, то располагаются по всей его поверхности. Такие рёбра предназначены для обеспечения дополнительной жёсткости всей конструкции, когда на картер возлагаются дополнительные функции.

Разновидности

Все картеры, которыми оснащают автомобили, можно разделить на две категории в зависимости от того, на каком именно силовом агрегате они устанавливаются.

Потому принято отдельно рассматривать конструкции для:

  • двухтактных ДВС;
  • четырёхтактных силовых установок.

Разница в конструкции картера обусловлена различиями в устройстве самих ДВС. Поддоны бывают разъёмными и неразъёмными. Зачастую поддон выступает как составной элемент картера, а не просто служит для сбора смазочного масла.

Двухтактные двигатели

Особенность изобретения Ф. Картера для двухтактного двигателя заключается в том, что картер и мотор являются одним целым. Это неотъемлемый элемент корпуса и один из компонентов системы питания силового агрегата.

Именно внутри картера происходит процесс подготовки топливовоздушной смеси. После этого смесь движется в цилиндры силового агрегата. Это одно из отличий в сравнении с четырёхтактным аналогом.

Также двухтактные моторы отличаются тем, что здесь масло контактирует непосредственно с топливом. При приготовлении смеси для цилиндров картер позволяет питать двигатель, а также параллельно смазывать элементы цилиндропоршневой группы.

Двухтактный дизельный двигатель

Подобное устройство системы приводит к тому, что внутри силового агрегата смешивается горючее и смазочное масло. Этим объясняется повышенная дымность и более тёмный цвет образующегося и выходящего через выхлопную трубу дыма. Выхлоп отличается синеватым оттенком, что является характерной особенностью моторов на мототехнике. Именно там продолжают использовать двухтактные моторы, в отличие от автомобилей.

На двухтактных моторах ресурс свечей зажигания значительно ниже по сравнению с четырёхтактным конкурентом. Двухтактные ДВС уже практически не встречаются на автомобилях, а также от них отказываются производители мототранспорта.

Картер и четырёхтактный двигатель

В случае с четырёхтактными моторами картеру отводится второстепенная или вспомогательная роль. Чаще всего тут картер нужен только в качестве ёмкости для сбора масла, не более того.

Объяснить такое решение не сложно. Современные четырёхтактные моторы не приветствуют попадания масла в цилиндры. Потому у них выхлоп обладает меньшей дымностью и более светлым цветом. Состав выхлопа получается чище и экологичнее.

Важным компонентом четырёхтактника в плане очистки выхлопных газов выступает катализатор. Сейчас он устанавливается практически на все современные автомобили с ДВС.

Особенности сухих картеров

Всё сказанное выше касалось непосредственно автомобилей, на которых используется мокрый поддон-картер. Это наиболее распространённая система смазки, применяемая на гражданском автотранспорте.

Но если говорить о картерах, то нельзя не отметить существование такого понятия как сухой картер. Здесь, в отличие от традиционных решений, в поддоне смазка отсутствует.

Сухие системы используются преимущественно в конструкциях гоночных автомобилей, спортивных машин и на некоторых внедорожниках. Объяснить такое решение инженеров достаточно просто. Когда автомобиль передвигается на высокой скорости, резко входит в повороты, быстро ускоряется и так же активно тормозит, либо взбирается на возвышенности, масло плещется по всему мотору, от одного края к другому.

Из-за таких ситуаций возникает высокая вероятность того, что маслоприёмник будет оголяться. При этом сам смазочный материал, в качестве которого выступает моторное масло, пенится. Если это произойдёт, двигатель столкнётся с такой проблемой как масляное голодание. Параллельно упадёт давление в системе.

Результатом подобных ситуаций становится сначала перегрев двигателя, а в дальнейшем его полный выход из строя со всеми вытекающими последствиями.

Система сухого картера

Сухой поддон-картер отличается тем, что в конструкции двигателей имеется специальный резервуар. Он служит для размещения всего смазочного материала. Конструктивно ёмкость разработана таким образом, чтобы процесс взбалтывания становился невозможным, даже при экстремальных условиях.

А чтобы каждый узел мог получать смазку и дополнительное охлаждение маслом, жидкость подаётся на них с помощью насоса. Во время работы смазка постепенно стекает в поддон. Чтобы масло снова оказалось в резервуаре, предусмотрен всасывающий модуль. Именно он отвечает за приём стекающего из мотора масла обратно в ёмкость. Далее насос повторно выполняет свою работу. Цикличность этого процесса гарантирует смазку всех необходимых элементов, но при этом отсутствуют недостатки, характерные для мокрого типа картера.

Можно выделить несколько основных преимуществ, которые характеризуют сухие типы автомобильных поддон-картеров:

  • исключается такая проблема как масляное голодание;
  • сам картер обладает меньшими геометрическими размерами;
  • снижен центр тяжести двигателя;
  • масло лучше охлаждается;
  • двигатель получает небольшую прибавку в мощности, поскольку снижается сопротивление смазки коленвалу.

Но параллельно использование системы сухого картера приводит к тому, что конструкция усложняется, двигатель становится сложнее в обслуживании и ремонте. Дополнительно увеличивается общий вес автомобиля. Всё это приводит к тому, что машины с сухими картерами, при прочих равных, дороге классических решений с картерами мокрого типа.

Во многом из-за этих имеющихся недостатков и отсутствия необходимости, в гражданских автомобилях сухие системы практически не используются. В них нет острой потребности. Мокрые картеры прекрасно справляются со своими задачами, они проще в изготовлении и легче в обслуживании.

Можно с уверенностью говорить о том, что картер является не просто неотъемлемой частью любого двигателя, работающего по принципу внутреннего сгорания топливовоздушной смеси. Это ещё и очень важный компонент, выполняющий свои задачи для обеспечения надёжной, бесперебойной и беспроблемной работы силовой установки.

Конструктивно эти элементы могут несколько отличаться друг от друга, но принцип их работы примерно везде одинаковый. Разница хорошо заметна только в случае с мокрыми и сухими системами картеров. Но поскольку обычные серийные машины крайне редко оснащаются сухим типом, в подавляющем большинстве случаев речь идёт именно о мокрых масляных картерах транспортных средств.

Источник