Что такое ионный ракетный двигатель

Испытания двигателя будущего завершены. Роскосмос празднует успех

На днях в одной из статей я писал про то, что Роскосмос успешно реализует работы над одним из самых амбициозных космических проектов в истории космонавтики.

Все в этом космическом кораблей революционно. Впервые, в качестве источника энергии для космического аппарата будет использоваться ядерный реактор мегаваттного класса , а в качестве двигательной установки будут использоваться тяжелые электрические ионные двигатели.

В комментариях многие читатели спрашивают, мол как же космический двигатель может работать на электричестве и создавать реактивную тягу в вакууме?

Все просто, никакого нарушения физики или магии.

В качестве рабочего тела выступает газ, обычно это аргон или водород. Под действием электростатического поля, газ ионизируется и благодаря высокому отношению заряда к массе, его ионы разгоняются и создают тягу.

Но раз нам все равно необходимо использовать газ в качестве рабочего тела, то для чего тогда нужны эти сложности?

Секрет заключается в очень большом удельном импульсе. Гипотетически такой двигатель способен разогнать корабль до 210 км/c тогда, как максимальная скорость рабочего тела химических двигателях обычных ракет не превышает 5 км/c ., что означет, что использование таких двигателей дает почти 100 кратное преимущество в скорости.

что использование таких двигателей дает почти 100 кратное преимущество в скорости. ., что значит что использование таких двигателей дает почти 100 кратное преимущество в скорости.

При этом, в отличие от химического двигателя, электрический расходует рабочее тело/топливо крайне экономно. Например, американский DAWN потратил всего 410 кг. аргона, чтобы достичь скорости в

40 000 км/ч . При этом, двигатель дает тягу очень равномерно, разгоняя аппарат на всей траектории полета.

И вот тут кроется самый интересный вопрос, если такие двигатели уже созданы, то в чем же инновации?

Дело в том, что все ранее испытанные и реализованные двигатели использовались на малых аппаратах и имели малый объем. Питались они либо за счет РИТЭГов , либо за счет солнечных панелей, т.е. тех источников питания, которые не могут дать много энергии, а следовательно и размеры таких движков были невелики.

Поскольку Роскосмос сообщает о расчетной массе нового комического корабля в районе 30 тонн, то и двигатели ему требуются тоже очень большие.

С этой целью были разработаны тяжелые ионные двигатели, аналогов, которых ранее не было.

Судите сами, если исследовательский аппарат NASA «DAWN» оснащен двигателями с 19-92 мН тяги, то отечественный ИД-500 имеет тягу 375750 мН, а в перспективной модификации новое поколение двигателя ВЧИД-45 будет развивать тягу в 1,8Н , что позволит успешно реализовывать проекты по колонизации дальнего космоса и Марса. Мощность ядерного реактора позволит установить не менее 30 таких двигателей на одном кораблей.

Создать такой двигатель оказалось не просто. Дело в том, что с масштабированием такого устройства и увеличением тяги, существенно возрастает износ ионной оптики и многократное увеличение расхода рабочего тела. Все эти проблемы и удалось решить нашим ученым.

Как отметил один из читателей, все это больше похоже на строчки из научной фантастике, однако это правда, двигатели существуют, реактор испытан, программа приоритетна и возможно, что в ближайшие 1015 лет, Россия снова проложит дорогу для всего мира к дальнему освоению космоса.

Дорогие друзья, нам очень важна ваша поддержка- подписывайтесь на канал, ставьте палец вверх. Вам не сложно, а нам приятно.

Источник

Как работает ионный двигатель и где он применяется

Ученые уже придумали или готовятся придумать много новых типов двигателей для космических кораблей. Самые смелые предположения даже говорят про варп-двигатель, который должен разгонять корабль до скоростей, в несколько раз превышающих скорость света за счет искривления пространства в мощном гравитационном поле. Пока это только фантастика, которая скоро может стать перспективой. Зато ионные двигатели уже существуют и даже применяются. Они уже на данном этапе могут развивать скорости в несколько раз выше тех, что предлагают традиционные ракетные двигатели. Правда, они не могут отправить ракету в космос. Вот такие противоречия. Но как же тогда работает ионный двигатель и почему на данном этапе это действительно является технологией будущего?

Читайте также:  Какая модель волги с крайслеровским двигателем

Такой двигатель может разгоняться до очень больших скоростей.

Как работает ионный двигатель

Принцип работы ионного двигателя простой и сложный одновременно. Он заключается в ионизации газа, который разгоняется электростатическим полем для получения реактивной тяги и разгона космического корабля согласно третьему закону Ньютона.

Топливом или рабочим телом такого двигателя является ионизированный инертный газ (гелий, аргон, неон, ксенон, криптон, оганесон, радон). Впрочем, не все инертные газы стоит использовать в качестве топлива, поэтому, как правило, выбор ученых и исследователей падает на ксенон. Также рассматривается вариант использования ртути в качестве рабочего тела ионного двигателя

Во время работы двигателя в камере образуется смесь из отрицательных электронов и положительных ионов. Так как электроны являются побочным продуктом, их надо отфильтровать. Для этого в камеру вводится трубка с катодными сетками для того, чтобы она притягивала к себе электроны.

Положительные ионы, наоборот, притягиваются к системе извлечения. После чего разгоняются между сетками, разница электростатических потенциалов которых составляет примерно 1 200 Вольт, и выбрасываются в качестве реактивной струи в пространство.

Схематичное изображение работы ионного двигателя.

Электроны, которые попали в катодную ловушку, должны быть удалены с борта корабля, чтобы он сохранял нейтральный заряд, а выброшенные ионы не притягивались обратно, снижая эффективность установки. Выброс электронов осуществляется через отдельное сопло под небольшим углом к струе ионов. Таким образом, что произойдет в их взаимодействии после покидания двигателя, уже не так важно, ведь они не мешают движению корабля.

Преимущества ионного двигателя для космического корабля

Ионы на выходе из двигателя разгоняются до очень высоких скоростей. В своем максимуме они могут достигать 210 км/с. При этом, химические ракетные двигатели не способны достигать и 10 км/с, находясь в диапазоне 3-5 км/с.

В нашем Telegram-чате все говорят про варп-двигатель, но давайте сначала с ионным разберемся.

Возможность достижения большого удельного импульса позволяет очень сильно сократить расход реактивной массы ионизированного газа в сравнении с аналогичным показателем для традиционного химического топлива. А еще, ионный двигатель может непрерывно работать более трех лет. Энергия, которая нужна для ионизации топлива берется от солнечных батарей — в космосе с этим проблем нет.

Если спешить с ускорением некуда, то ионный двигатель станет отличным вариантом.

Недостатки ионных двигателей

Возможность продолжительной работы ионного двигателя очень важна, так как он не способен развивать высокую тягу и моментально разгонять корабль до больших скоростей. В нынешних реализациях тяга ионных двигателей с трудом достигает 100 миллиньютонов.

Из-за такой конструктивной особенности, как минимум пока, такой двигатель не дает возможности стартовать с другой планеты, даже если у нее очень маленькая гравитация.

Получается, что использование таких двигателей для дальних путешествий пока невозможно без традиционных тяговых установок на химическом топливе. Зато, их совместное использование позволит гораздо более гибко пользоваться ускорением. Например, за счет обычного двигателя разгонять аппарат до более менее высокой скорости, а потом ускоряться еще больше за счет ионного двигателя.

Покорение дальнего космоса без новых технологий невозможно.

По сути, малая тяга на данный момент является главным недостатком таких двигателей, но ученые работают в этом направлении и в перспективе повысят его мощность, так как определенного прогресса удалось добиться уже сейчас.

Еще одной, пусть и не такой существенной, проблемой является надежность. В целом ионные двигатели достаточно надежны, но надо понимать, что их задача заключается в том, чтобы унести аппарат очень далеко и очень быстро. То есть работать он должен долго, чтобы не ставить под удар всю миссию. Поэтому, пока идут работы над увеличением мощности, разработчики стараются не забывать и о надежности.

Где используются ионные двигатели

Вам могло показаться, что ионные двигатели существуют только на бумаге и в лабораториях, но это не так. Они уже использовались, как минимум, в семи завершившихся миссиях и используются минимум в четырех действующих.

В том числе такие двигатели используются в рамках миссии BepiColombo, запущенной 20 октября 2018 года. В этой меркурианской миссии используются 4 ионных двигателя суммарной мощностью 290 миллиньютонов. Кроме этого, аппарат оснащен и химическим двигателем. Оба они в сочетании с гравитационными маневрами должны обеспечить выход корабля на орбиту Меркурия в качестве искусственного спутника.

Читайте также:  Двигатель ваз 2106 как увеличить мощность двигателя

Космический аппарат BepiColombo.

Использованием этих двигателей не брезгует и Илон Маск в своей программе Starlink, за счет этих двигателей корабль должен совершать небольшие маневры и уклоняться от космического мусора.

Сейчас планируется доставка на МКС ионной тяговой установки, которая позволит управлять положением станции в автоматическом режиме. Ее мощность подобрана исходя из доступной электрической мощности станции. Для большей надежности планируется так же доставка батарей, которые обеспечат 15 минут автономной работы двигателя.

Астрономы открыли новый тип взрывов в космосе

Но самым необычным проектом был ”Прометей”. Корабль в рамках этого проекта планировалось отправить к Юпитеру со скорость 90 км/c. Ионный двигатель корабля должен бал работать от ядерного реактора, но из-за технических трудностей в 2005 году проект закрыли.

Когда изобрели ионный двигатель

При всей перспективности ионного двигателя, первый раз его концепцию предложил еще в 1917 году Роберт Годдард. Только спустя почти 40 лет Эрнст Штулингер сопроводил концепцию необходимыми расчетами.

В 1957 году вышла статья Алексея Морозова под названием ”Об ускорении плазмы магнитным полем”, в которой он описал все максимально подробно. Это и дало толчок к развитию технологии и уже в 1964 году на советском аппарате ”Зонд-2” стоял такой двигатель для маневров на орбите.

Первый аппарат в космосе с ионным двигателем.

По сути, ионный двигатель является первым электрическим космическим двигателем, но его надо было дорабатывать и совершенствовать. Этим и занимались долгие годы, а в 1970 году прошло испытание, призванное продемонстрировать эффективность долговременной работы ртутных ионных электростатических двигателей в космосе. Показанный тогда малый КПД и низкая тяга надолго отбили желание американской космической промышленности пользоваться такими двигателями.

Ученые поймали очередной сигнал из космоса, но теперь он регулярно повторяется

В СССР разработки продолжались и после этого времени. И европейское, и американское космические агентства вернулись к этой идее. Сейчас исследования продолжаются, а выведенные на орбиту образцы двигателей, хоть и не могут быть главным тяговым элементом управления, но зато проходят ”проверку боем”. Собранная информация позволит увеличить мощность ионного двигателя. По разной информации, так удалось увеличить тягу самого мощного подобного двигателя более чем до 5 Н. Если это так, то все действительно не зря.

Источник

Ионный двигатель: невероятная скорость уже в наши дни

Ионный двигатель создает возможность разогнать космический аппарат в условиях невесомости до скоростей, которые и не снились жидкостным и химическим реактивным двигателям.

Этот двигатель основан на создании реактивной тяги ионизированного газа, разогнанного до невероятных скоростей в электрическом поле. Устройство такого двигателя описал русский ученый К.Э. Циолковский в 1906 г. В дальнейшем его теория дорабатывалась и уточнялась. Теперь она находит практическое применение на орбите.

Ионный двигатель работает, используя ионизированный газ и электричество. Рабочим телом, как правило, является ионизированный инертный газ (аргон, ксенон), иногда и ртуть. Газ подается в ионизирующую камеру двигателя, где нейтральные молекулы становятся положительно заряженными ионами. Зажигание двигателя начинается с кратковременной подачи электронов , выбрасываемых в ионизирующую камеру. Для «отсеивания» электронов в камере устанавливается трубка с катодными сетками, которая притягивает к себе электроны. Положительные ионы притягиваются к системе извлечения, состоящей из 2 или 3 положительно-заряженной и отрицательно-заряженной сеток. Между сетками поддерживается большая разница электростатических потенциалов (+1090 вольт на внутренней и -225 на внешней). В результате попадания ионов между сетками, они разгоняются и выбрасываются в пространство, сообщая тягу космическому кораблю. Электроны, пойманные в катодную трубку, выбрасываются из двигателя под небольшим углом к соплу.

Для выработки электричества в настоящее время используются солнечные батареи, но в дальнейшем планируется использовать термоядерные установки, которые быстрее появятся в космосе чем на земле. Отдельно про термоядерные двигатели читайте в этой статье .

Использование внешнего магнитного поля в ионном двигателе позволяет повысить энергоэффективность системы.

Итак, преимущества ионного двигателя:

– потенциально высокая конечная скорость разгоняемого крейсера Аврора космического челнока;

– большой удельный импульс. У ионного двигателя он самый высокий из всех существующих двигателей, так как на свою мощность он тратит сопоставимо мало топлива, в отличие от тех же жидкостных движков.

– для функционирования ионного двигателя достаточно небольшой электрической мощности – от 150 до 500 Ватт. Двигатели мощностью от 150 до 500 Ватт могут быть установлены на малые космические аппараты,

низкая рабочая температура в отличии от обычных реактивных двигателей,

– рабочее тело не требует высокой степени очистки, чего не скажешь о керосине для ЖРД.

– простота конструкции, ремонтопригодность

– ионный двигатель позволит увеличить срок эксплуатации космических аппаратов в 2-3 и более раза,

– для путешествия на Марс (и обратно) достаточно ионного двигателя мощностью порядка 50 кВт.

Перспективы: когда полетим в дальние дали?

Читайте также:  Двигатель смд 62 от чего

Применение ионных двигателей в космических аппаратах открывает новые перспективы развития космонавтики, в частности, запускаемых космических аппаратов. Современные перспективы таковы, что доля запускаемых тяжелых космических аппаратов массой больше 1 тонны неуклонно снижается и составляет не более 30% от всех запусков. Все более востребованными становятся малые космические аппараты весом от 100 кг до 500 кг, находящиеся на низкой околоземной орбите до 1000 км и функционирующие в течение 5-10 лет. К малым космическим аппаратам относятся спутники и системы мобильной связи и радионавигации, мониторинга Земли, атмосферы и околоземного космического пространства.

Ионные двигатели в ближайшем будущем позволят заменить двигатели орбитального движения малых космических аппаратов, что увеличит срок их эксплуатации в 2-3 раза и продлит срок их жизни до 5-10 лет.

В отдаленной перспективе планируется оснащать все, в том числе тяжелые, космические аппараты ионными двигателями, что позволит совершать путешествия к далеким планетам и звездам, пилотируемые экспедиции к планетам Солнечной системы, тяжелые транспортные перелеты. В данный момент ионные двигатели применяются для управления ориентацией и положением на орбите искусственных спутников Земли.

С течением технической проработки концепции двигателя он сможет в ближайшем будущем заменить главный тяговый двигатель тяжелых космических аппаратов.

Характеристики электроракетных двигателей определяются не только скоростью истечения заряженных частиц, но и плотностью тяги — значением силы тяги , приходящимся на единицу площади отверстия, через которое эти частицы истекают. Возможности ионных и аналогичных электростатических двигателей ограничиваются объемным зарядом , который налагает очень низкий предел на достижимую плотность тяги. Дело в том, что по мере прохождения положительных ионов через электростатические сетки двигателя между ними неизбежно накапливается положительный заряд, который уменьшает напряженность электрического поля, ускоряющего ионы.

Из-за этого тяга двигателя зонда Deep Space 1 эквивалентна примерно весу листа бумаги, что очень далеко от тяги двигателей в научно-фантастических фильмах вроде «Интерстеллар». Для разгона тонны веса с помощью такой силы от нуля до сотни при отсутствии сопротивления движению потребовалось бы более двух суток. В космическом вакууме, который не оказывает сопротивления, придать аппарату большую скорость способна даже очень слабая сила, если она действует достаточно долго.

Ионный, холловский и плазменный — три типа плазменных двигателей, уже нашедших практическое применение. За последние десятилетия исследователями предложено много перспективных вариантов. Разрабатываются двигатели, работающие в импульсном и в непрерывном режиме. В одних плазма создается с помощью электрического разряда между электродами, в других — индуктивным способом с помощью катушки или антенны. Различаются и механизмы ускорения плазмы: с использованием силы Лоренца, путем введения плазмы в создаваемые магнитным способом токовые слои, или с помощью бегущей электромагнитной волны. В одном из типов даже предполагается выбрасывать плазму через невидимые «ракетные сопла», создаваемые с помощью магнитных полей.

Черепаха все равно побеждает

Во всех случаях плазменные ракетные двигатели набирают скорость медленнее обычных. Тем не менее благодаря парадоксу «чем медленнее, тем быстрее» они позволяют достичь далеких целей в более короткий срок, так как в итоге разгоняют космический аппарат до скорости значительно большей, чем двигатели на химическом топливе при той же массе топлива. Это позволяет избежать траты времени на отклонения к телам, обеспечивающим эффект гравитационной пращи . Как в знаменитой истории о медлительной черепахе, которая в итоге обгоняет зайца, в длительных полетах, которыми будет наполнен наш век, «черепаха» все равно победит.

Еще больше интересных статей — подписывайся!

Источник