Что такое индикаторный кпд двигателя

Основы теплотехники

Энергетические и экономические показатели работы ДВС

Действительная индикаторная диаграмма

Полезная работа, которую совершает поршень при перемещении внутри цилиндра, получается в результате частичного преобразования теплоты при сгорании топлива. Эту работу называют индикаторной.
Индикаторная работа соответствует площади, заключенной между кривой сжатия и кривой расширения на индикаторной диаграмме (рис. 1).
Площадь на индикаторной диаграмме, заключенная между кривыми впуска и выпуска, соответствует работе, затраченной на процесс газообмена (насосные ходы поршня). Как известно, точки с и z‘, полученные на расчетной индикаторной диаграмме, не соответствуют реально протекающим процессам сжатия и сгорания. В результате предварительного открытия клапанов и запаздывания их закрытия относительно ВМТ и НМТ поршня часть площади, соответствующей индикаторной работе, выпадает из индикаторной диаграммы (пунктирная линия b’bb”).

В результате площадь действительной индикаторной работы (сплошные линии) оказывается меньше расчетной (штриховые линии).
Для получения действительной индикаторной диаграммы используют коэффициент скругления φi . Значения коэффициента скругления в зависимости от типа четырехтактного двигателя могут принимать значения от 0,92 до 0,97.

Индикаторные показатели

Индикаторными показателями называют показатели, характеризующие работу, совершаемую газами в цилиндре двигателя. Эти показатели определяют эффективность использования рабочего объема двигателя и степень преобразования выделяемой теплоты в полезную работу внутри цилиндров.
К индикаторным показателям относятся:

  • индикаторная мощность Ni ;
  • среднее индикаторное давление pi ;
  • индикаторный КПД ηi ;
  • удельный индикаторный расход топлива gi .

Среднее индикаторное давление

Среднее индикаторное давление – это условное постоянное по величине избыточное давление, которое, действуя на поршень в течение одного хода, совершает работу, равную работе газов за весь цикл:

где Li – работа газов за один цикл в одном цилиндре двигателя; pi – среднее индикаторное давление; F – площадь поршня; S – ход поршня; Vh – рабочий объем цилиндра.

Тогда можно записать:

Т. е. среднее индикаторное давление численно равно работе газов за цикл, отнесенной к единице рабочего объема. Таким образом, этот показатель оценивает степень эффективности использования объема цилиндра.

Значения pi могут быть получены расчетным путем или по индикаторным диаграммам. При расчете используют параметры характерных точек расчетных циклов. При этом работа расчетного цикла может быть выражена как разность работ расширения и сжатия:

где L’yz + L’zb — индикаторная работа расширения расчетного цикла двигателя, L’ac – работа сжатия.

Так как работа (и среднее индикаторное давление) действительных циклов на самом деле меньше, чем расчетных циклов, то с учетом коэффициента скругления φi индикаторной диаграммы:

С помощью индикаторной диаграммы можно найти среднее индикаторное давление, обозначив индикаторную работу через площадь Fi :

где mр – масштаб диаграммы по оси ординат; l – длина диаграммы по оси абсцисс.

Читайте также:  Пульсирующий реактивный двигатель принцип работы

Индикаторная мощность

Индикаторная мощность Ni – это мощность, которая развивается газами внутри цилиндра. В общем случае мощность – это скорость выполнения работы, т. е. работа, совершаемая в единицу времени. Работа газов в цилиндрах двигателя за 1 мин рассчитывается по формуле:

где n – частота вращения коленчатого вала; τ – число тактов; i – число цилиндров.

Тогда работа, совершаемая газами за 1 сек, т. е. индикаторная мощность будет равна:

Индикаторный КПД

Индикаторный КПД ηi – это отношение теплоты, преобразованной в индикаторную работу Qi к общему количеству теплоты затраченного топлива Q1 :

где Gтц – цикловая подача топлива; Hи – низшая теплотворная способность топлива.

Индикаторные КПД характеризует экономичность действительного цикла. Он всегда меньше термодинамического КПД вследствие дополнительных потерь в действительном цикле, которые не учитываются при определении ηi . К таким потерям относятся теплоотдача в стенки цилиндра, потери на неполноту и несвоевременность сгорания топлива, на диссоциацию (распад) продуктов сгорания.

Для оценки степени уменьшения использования теплоты в действительном цикле по сравнению с термодинамическим циклом используют относительный КПД ηo :

Индикаторный удельный расход топлива

Другим показателем, характеризующим экономичность действительного цикла, является индикаторный удельный расход топлива gi :

где Gт – часовой расход топлива.

Удельный индикаторный расход топлива и индикаторный КПД связаны между собой отношением:

Из уравнения (6) получим:

Подставив это выражение в уравнение (2), получим:

Выразив цикловую подачу топлива в зависимости от цикловой подачи воздуха и коэффициента избытка воздуха, и подставив эти выражения в предыдущее уравнение, получим:

Факторы, влияющие на индикаторные показатели

На индикаторные показатели оказывают влияние следующие факторы:

1. Топливо

Изменение фракционного состава топлива в зависимости от способа смесеобразования приводит к ухудшению или улучшению индикаторных показателей.

2. Состав смеси

Для дизельных и карбюраторных двигателей состав смеси оказывает различное влияние (рис. 2).
У карбюраторного двигателя наибольшее значение индикаторного КПД достигается при α = 1,05…1,1, когда имеет место полное и достаточно быстрое сгорание топлива.
У дизелей вследствие недостатков внутреннего смесеобразования топлива полностью сгорает при α = 2,5…4,0, чему способствует наибольшее значение индикаторного КПД. Уменьшение коэффициента избытка воздуха от указанных значений приводит к недогоранию топлива, увеличению тепловых потерь с воздухом, не участвующим в горении.

3. Угол опережения зажигания

С увеличением угла опережения зажигания увеличивается максимальное давление сгорания, «жесткость» работы, потери теплоты в окружающую среду. При позднем зажигании процесс сгорания смещается на процесс расширения, из-за чего падает давление и с ним индикаторная работа. Поэтому КПД снижается при любом отклонении угла опережения зажигания от оптимального.

4.Частота вращения коленчатого вала

Рост частоты вращения коленчатого вала приводит к увеличению индикаторного КПД, поскольку сокращается время цикла и суммарная теплоотдача в стенки цилиндров. Однако при некоторых максимальных значениях частоты вращения коленчатого вала индикаторный КПД падает, так как догорание топлива все более завершается на линии расширения (по индикаторной диаграмме).

5. Нагрузка

У карбюраторных двигателей наибольшие значения индикаторного КПД соответствуют средним нагрузкам при экономичном составе смеси 1,05 α α α , чем дизели с однополостными камерами сгорания. Поэтому, несмотря на меньшую величину индикаторного КПД, среднее индикаторное давление двигателей с раздельными камерами сгорания не уступает среднему индикаторному давлению двигателей с неразделенной камерой сгорания.

7. Степень сжатия

Степень сжатия влияет на индикаторный КПД также, как и на термодинамический КПД, поэтому при проектировании двигателей стремятся к увеличению степени сжатия. Однако у карбюраторных двигателей увеличение степени сжатия ограничено детонацией. У дизельных двигателей индикаторный КПД при увеличении степени сжатия более некоторых оптимальных значений будет изменяться незначительно.

8. Климатические условия (окружающая среда)

При увеличении температуры окружающей среды и снижении давления уменьшается наполнение цилиндров по массе. При неизменной подаче топлива уменьшается коэффициент избытка воздуха, что ведет к снижению показателей индикаторного КПД и индикаторного давления.

Источник

Что такое индикаторный кпд двигателя

Главное меню

Судовые двигатели

Рабочий цикл, как это уже отмечалось ранее, имеет тепловые потери, к числу которых относятся: потеря тепла с охлаждающей водой, потеря тепла с отработавшими газами, потеря тепла вследствие неполноты сгора­ния топлива и потеря тепла вследствие диссоциации продуктов сгорания. Степень использования тепла в реальном двигателе оценивается так назы­ваемым индикаторным к. п. д. ? i , который равен отношению количества тепла, преобразованного в работу в цилиндре реального двигателя, к ко­личеству тепла, затраченному на получение этой работы.

Если количество подведенного тепла за рабочий цикл равно Q i ккал, то

где L i — работа, совершаемая газами за один цикл, в кг-м. Величина Q i на один моль воздуха будет равна

Из полученной формулы следует, что ? i зависит от ряда параметров, которые между собой взаимосвязаны, но одновременно следует заметить, что при работе двигателя с постоянными давлением и температурой воздуха перед впускным органом будем иметь

так как значения других параметров (L , Q н ) мало изменяются.

Из рассмотрения зависимости (144) следует, что величина ? i главным образом определяется значениями р i , ? и ? н . Чем больше p i при данном значении ?, тем больше ? i . Необходимо обратить внимание на то, что при увеличении ? н возрастает p i , а если у дизеля сохранить при этом количество топлива, подаваемого за цикл неизменным, то ? также возрастет, а потому произведение р 1 ? увеличится больше, чем величина ? н , и, следовательно, ? i при этом повысится.

Влияние р i , ? и ? н на ? i и их взаимосвязь объясняются влиянием на протекание процесса сгорания значений ?, ?, качества смесеобразования, нагрузки и числа оборотов двигателя, угла опережения подачи топлива и др. С увеличением в дизелях ? примерно от 1,2 до 2,5—3,0 индикаторный к. п. д. быстро увеличивается, а при дальнейшем увеличении ? рост ? i про­исходит медленно. Такое увеличение ? i при увеличении ?, как это происходит вследствие более благоприятных ус­ловий для протекания процесса сгорания и по причине снижения теплоем­кости рабочего тела.

При увеличении числа оборотов двигателя ? н снижается, а потому при сохранении подачи топлива за цикл неизменной ? и p i уменьшаются, ? i также уменьшается.

При работе двигателя с наддувом повышение ? i происходит, кроме того, за счет более совершенного протекания процесса сгорания и увеличе­ния ? за счет промежуточного охлаждения наддувочного воздуха.

Если ? i выразить через работу, совершаемую в цилиндре в течение часа, равную 1 л. с., то

Для сравнения степени использования теплоты в рабочем и в идеаль­ном циклах применяется так называемый относительный к. п. д., который равен отношению индикаторного к. п. д. рабочего цикла к термическому к. п. д. идеального цикла:

У выполненных двигателей ? g колеблется от 0,75 до 0,85.

Источник

Индикаторный КПД

Индикаторный КПД ηi — это отношение теплоты, преобразованной в индикаторную работу Qi: к общему количеству теплоты затраченного топлива Q1:

(4.8)

где Gтц — цикловая подача топлива;

Нu — низшая теплотворная способность топлива.

Индикаторный КПД характеризует экономичность действительного цикла. Он всегда меньше термодинамического вследствие дополнительных потерь в действительном цикле, которые не учитываются при определении ηt. К таким потерям относятся теплоотдача в стенки цилиндра, потери на неполноту и несвоевременность сгорания топлива, на диссоциацию (распад) продуктов сгорания.

Для оценки степени уменьшения использования теплоты в действительном цикле по сравнению с термодинамическим используют относительный КПД ηo:

Другим показателем, который характеризует экономичность действительного цикла, является индикаторный удельный расход топлива gi:

где GT — часовой расход топлива.

Удельный индикаторный расход топлива и индикаторный КПД связаны между собой отношением

(4.9)

Из уравнения (4.8) получим

Подставив это выражение в уравнение (4.2), получим

Выразив цикловую подачу топлива в зависимости от цикловой подачи воздуха и коэффициента избытка воздуха и подставив эти выражения в предыдущее уравнение, получим

(4.10)

На индикаторные показатели влияют следующие факторы:

1. Топливо. Изменение фракционного состава топлива в зависимости от способа смесеобразования приводит к ухудшению или улучшению индикаторных показателей.

2. Состав смеси. Для дизеля и карбюраторного двигателя состав смеси оказывает различное влияние (рис. 4.2).

Рис 4.2. Зависимости индикаторного КПД дизеля (а)
и двигателя с искровым зажиганием (б) от коэффициента избытка воздуха

У карбюраторного двигателя наибольшие значения индикаторного КПД достигаются при а, равным 1,05—1,1, когда имеет место полное и еще достаточно быстрое сгорание топлива. У дизелей вследствие недостатков внутреннего смесеобразования топливо полностью сгорает, если а равно 2,5—4, чему соответствует наибольшее значение ηi. Уменьшение коэффициента избытка воздуха от указанных значений приводит к недогоранию, увеличению тепловых потерь с воздухом, не участвующим в горении.

3. Угол опережения зажигания. С увеличением угла опережения зажигания увеличивается максимальное давление сгорания, «жесткость» работы, потери теплоты (в окружающую среду). При позднем зажигании процесс сгорания смещается на процесс расширения, из-за чего падает давление и с ним индикаторная работа. Поэтому КПД снижает свои значения при любом отклонении угла опережения зажигания от оптимального.

4. Частота вращения коленчатого вала. Рост частоты вращения коленчатого вала приводит к увеличению индикаторного КПД, так как сокращается время цикла и суммарная теплоотдача в стенки цилиндра. Однако при некоторых максимальных значениях частоты вращения коленчатого вала ηi падает, так как догорание топлива все более завершается на линии расширения (по индикаторной диаграмме).

5. Нагрузка. У карбюраторных двигателей наибольшие значения ηi соответствуют средним нагрузкам при экономическом составе топлива (1,05

Источник

Adblock
detector