Что такое фактор устойчивости двигателя

Что такое фактор устойчивости двигателя

Главное меню

Судовые двигатели

Равновесный режим работы двигателя может поддерживаться в течение конечного интервала времени только при условии ра­венства количества энергии, вырабатываемой двигателем, количеству энергии, поглощаемой потребителем. Если эти количества энергии охарактеризовать крутящим моментом двигателя М и моментом сопротивления М с , приведенным к валу двигателя, то условие получения равновесного режима обусловливается урав­нением статического равновесия (1). Частота вращения коленчатого вала при этом остается постоянной во времени.

На рис. 26 приведен график, на котором совмещены характе­ристики двигателя (кривые 1, 2, 3 и 4) с характеристиками потре­бителя (кривые 5, 6, 7 и 8). Точки пересечения их (А, В, С и т. д.) характеризуют установившиеся режимы работы, так как удовлет­воряют условию (1). График показывает также и то, что при выб­ранных положениях органа управления (выбрана частичная ха­рактеристика двигателя, например, кривая 2) и ха­рактеристике потребителя (например, кривая 6) равновесный режим (точка В) для данного вида характеристик соот­ветствует определенной угловой скорости ? B .

Установившийся режим работы двигателя с течением времени может нарушаться по различным причинам, вызывающим кратко­временные изменения в условиях работы или двигателя, или потребителя. К таким причинам можно отнести, например, пропуск вспышки в одном из цилиндров двигателя, отчего получается крат­ковременное уменьшение крутящего момента (по существу кратковременный переход на другую частичную характеристику) или оголение гребного винта судна во время штормовой погоды, вы­зывающее изменение характеристики сопротивления (вместо харак­теристики 6 для гребного винта, находящегося в воде, в этот мо­мент действует характеристика 8 для гребного винта, находяще­гося в воздухе).

Нарушение установившегося режима работы двигателя вызы­вает отклонение частоты вращения вала в ту или иную сторону. При оголении гребного винта нагрузка главного двигателя резко уменьшается, поэтому частота вращения вала увеличивается и ока­зывается больше частоты вращения вала при равновесном режиме (? в ) в момент погружения винта, когда характеристикой сопро­тивления вновь становится кривая 6. Работа главного двигателя в этот момент зависит от взаимного протекания характеристик двигателя и потребителя. Действительно, при новой угловой ско­рости ? в ’ > ? в (рис. 27, а) момент сопротивления М с становится больше крутящего момента двигателя М, вследствие чего угловая скорость вала уменьшается и равновесный режим восстанавли­вается.

При пропуске вспышки частота вращения вала, наоборот, уменьшается до значения ? вв , вследствие чего момент сопротивления М с окажется меньше крутящего момента двига­теля М. Это вновь вызовет увеличение частоты вращения вала и, так же как и в предыдущем случае, восстановление установив­шегося режима ? в .

Способность двигателя восстанавливать равновесный режим без воздействия на орган управления называется самовыравниванием (устойчивостью). В этом случае считают, что двигатель обла­дает положительным самовыравниванием или имеет устойчивые равновесные режимы работы.

Устойчивый равновесный режим двигателя аналогичен край­нему нижнему положению шарика на вогнутой поверхности (рис. 27, а).

При ином взаимном протекании характеристик двигателя и по­требителя в точке равновесного режима последний может быть слабо устойчивым или неустойчивым вообще (рис. 27, б). Действи­тельно, при отклонении скоростного режима от равновесного ? в , например, в сторону увеличения угловой скорости ? в ’ >? в , крутящий момент двигателя М оказывается больше момента со­противления М с . Поэтому в системе двигатель—потребитель по­является избыток энергии, что вызывает увеличение частоты вра­щения, и равновесный режим ? в , таким образом, не восстанавли­вается. При уменьшении угловой скорости до ? в ’ крутящий мо­мент двигателя М становится меньше момента сопротивления М с , в результате чего происходит дальнейшее снижение частоты вра­щения вплоть до самопроизвольной остановки двигателя. Это зна­чит, что равновесный скоростной режим в точке В является не­устойчивым.

Читайте также:  Как включит автозапуск двигателя

Неустойчивый режим двигателя аналогичен положению ша­рика, находящегося в крайней верхней точке выпуклой поверх­ности (при малейшем отклонении шарик не вернется в прежнее положение). В этом случае двигатель обладает отрицательным само­выравниванием.

Наконец, если характеристики двигателя и потребителя сов­падают всеми своими точками в некотором диапазоне скоростных режимов, то двигатель в этом случае обладает нулевым самовырав­ниванием. Такой режим двигателя аналогичен положению шарика на горизонтальной плоскости.

Таким образом, устойчивость режимов работы двигателей опре­деляется взаимным влиянием характеристик двигателя и потре­бителя. Поэтому один и тот же двигатель с одним потребителем может работать на хорошо устойчивых режимах, а с другим — на слабоустойчивых или вообще неустойчивых режимах.

Понятие устойчивости включает, следовательно, не только ка­чественную характеристику режима работы двигателя, но и ко­личественную, так как устойчивые (или неустойчивые) режимы ра­боты неравноценны. Для уяснения этого положения достаточно проанализировать режим в точке В (см. рис. 27, а), образуемый пересечением характеристики потребителя (кривая 2) с характери­стиками двух различных двигателей (кривые 1 и 3 ). Восстановле­ние режима в точке В происходит из-за избытка (при уменьшении ?) или недостатка (при увеличении ?) крутящего момента.

Чем больше избыток или недостаток крутящего момента при том же отклонении частоты вращения от равновесной, тем большее количество энергии участвует в восстановлении равновесного режима и тем быстрее (при про­чих равных условиях) последний будет восстановлен.

При уменьшении угловой скорости до ? в ” двигатель, имеющий характеристику 1 , получит избыток крутящего момента

а двигатель, имеющий характеристику 3 , избыток крутящего мо­мента

но так как ?М 1 > ?М 2 , то режим работы первого двигателя бо­лее устойчив, чем второго.

Устойчивость работы зависит от дисбаланса крутящего момента двигателя и момента потребителя при данном отклонении угловой скорости от равновесного режима. Поэтому оценкой устойчиво­сти режима работы двигателя может служить отношение

называемое фактором устойчивости двигателя.

При выбранном отклонении скоростного режима ?? (рис. 28) разность ?M’ момента сопротивления и крутящего момента дви­гателя может быть принята приближенно равной отрезку между касательными 3 и 4, проведенными к характеристикам 1 и 2 в точке равновесного режима В . Из графика видно, что ?М’ будет тем точнее соответствовать действительному дисбалансу ?М д , чем меньше . Принимая отклонение скоростного режима от равно­весного малым, фактор устойчивости можно представить в виде

При известных углах ? с и ? е наклона касательных в точке В равновесного режима приращения ?М с момента сопротивления и ?М крутящего момента двигателя определяются соотношениями

Здесь использованы частные производные, так как момент сопроти­вления зависит не только от скоростного режима, но и от настройки потребителя (например, от выбора передачи в коробке передач или от шага ВИШ), а крутящий момент двигателя зависит, кроме угловой скорости вала, от положения органа управления. С уче­том этих соотношений

Характер сил, появляющихся при выводе коленчатого вала двигателя из состояния равновесного вращения, определяется знаком F д . Если д М с / д ? > д М/ д ? характеристика сопротивле­ния будет более крутой, чем характеристика двигателя, и режим работы будет устойчивым. Фактор устойчивости F д при этом по­ложителен, и двигатель имеет положительное самовыравнивание. Если д М с / д ? д М/ д ?, то F д

Сравнение характеристик карбюраторного двигателя (см. рис. 23, а) с характеристиками потребителя (см. рис. 25) позволяет заключить, что карбюраторные двигатели имеют существенное положительное самовыравнивание (F д > 0), в то время как у ди­зелей фактор устойчивости либо положителен, но мал по абсолют­ной величине (рис. 29), либо имеет даже отрицательное значение (см. рис. 27, б ).

Читайте также:  Не работает холостой ход на холодном двигателе ваз 2114

Источник

Что такое фактор устойчивости двигателя

§ 4.8. УСТОЙЧИВОСТЬ РАБОТЫ АСИНХРОННОГО ДВИГАТЕЛЯ

Факторы, определяющие устойчивость. Под устойчивостью работы электродвигателя понимают способность двигателя восстанавливать установившуюся частоту вращения при кратковременных возмущениях (изменениях нагрузки, напряжения питающей сети и пр.).

Рассмотрим известное из механики условие равновесия моментов, приложенных к ротору двигателя:

При М = M ст ускорение ротора

Устойчивость зависит от конкретных условий, при которых работает электродвигатель, в частности от формы механических характеристик двигателя и приводимого им во вращение производственного механизма.

Механические характеристики некоторых производственных механизмов (а) и графики для определения статической устойчивости асинхронного двигателя (б)

На рис. 4.23, а для примера приведено несколько типичных механических характеристик различных производственных механизмов. Для грузоподъемных механизмов (кранов, лифтов, лебедок и т. п.) характерным является неизменность статического момента М ст , его практическое постоянство независимо от частоты вращения (прямая 1 на рис. 4.23, а). Вентиляторы, центробежные насосы, гребные винты и прочие механизмы имеют характеристику (кривая 2), при которой нагрузочный момент М ст резко увеличивается с ростом частоты вращения. Эту характеристику часто называют вентиляторной. Бетономешалки, шаровые мельницы и некоторые другие механизмы имеют большое трение в состоянии покоя и при малых частотах вращения, поэтому в таких механизмах с ростом частоты вращения нагрузочный момент падает (кривая 3).

Устойчивость «в малом». Рассмотрим работу асинхронного электродвигателя [механическая характеристика 1 на рис. 4.23, б], приводящего во вращение производственный механизм, у которого статический (нагрузочный) момент М ст падает с увеличением частоты вращения (механическая характеристика 2). В этом случае условие М = М ст выполняется в точках А и В при значениях частоты вращения п А и п B. Однако в точке В двигатель не может работать устойчиво, так как при малейшем изменении момента М ст (нагрузки) и возникающем в результате этого отклонении частоты вращения от установившегося значения появляется избыточный замедляющий или ускоряющий момент ± (ММ ст ), увеличивающий это отклонение. Например, при случайном небольшом увеличении статического момента М ст ротор двигателя начинает замедляться, а его частота вращения п 2 — уменьшаться. При работе машины в режиме, соответствующем точке В, т. е. на участке М П характеристики 1, это приводит к уменьшению электро­магнитного момента М, т. е. к еще большему возрастанию разности (ММ ст ). В результате ротор продолжает замедляться до полной остановки. При случайном уменьшении статического момента ротор начинает ускоряться, что приводит к дальнейшему увеличению момента М и еще большему ускорению до тех пор, пока машина не переходит в режим работы, соответствующий точке А. При работе машины в режиме, соответствующем точке А, двигатель работает устойчиво, так как при случайном увеличении момента М ст и замедлении ротора (т. е. уменьшении частоты вращения п 2 ) электромагнитный момент М возрастает. Когда момент М станет равным новому значению М ст , двигатель снова работает с установившейся, но несколько меньшей частотой вращения.

Таким образом, асинхронный двигатель при работе на участке С — М механической характеристики обладает свойством внутреннего саморегулирования, благодаря которому его вращающий момент автоматически регулируется по закону М = М ст . Это регулирование осуществляется за счет увеличения или уменьшения частоты вращения ротора п 2 , т. е. система регулирования является статической.

Сравнивая условия работы двигателя в точках А и В, можно сделать вывод, что работа двигателя устойчива, если с увеличением частоты вращения п 2 статический момент М ст уменьшается медленнее, чем электромагнитный момент двигателя М. Это условие представим в следующем виде:

Оно выполняется практически для всех механизмов с падающими характеристиками М ст = f(n) и с характеристиками, не зависящими от частоты вращения (кривые 3 и 1 на рис. 4.23, а), если двигатель работает на участке С — М характеристики 1 (рис. 4.23,6). Следовательно, двигатель, приводящий во вращение подобные механизмы, может устойчиво работать только в диапазоне изменения скольжения 0 sкр . При s > s кр , т.е. на участке М — П механической характеристики 1, устойчивая работа становится невозможной.

При работе электродвигателя совместно с производственным механизмом, имеющим вентиляторную характеристику (см. рис. 4.23, а), устойчивая работа возможна и на участке М — П механической характеристики 1, т. е. при S > S кp . Однако допускать работу при скольжениях, больших критического, не следует, так как при этом резко уменьшается КПД двигателя, а потери мощности в его обмотках становятся настолько большими, что могут в короткое время вывести двигатель из строя.

Устойчивость «в большом». Практически условие (4.54) является необходимым, но недостаточным. В эксплуатации возможны не только кратковременные небольшие изменения М ст , но и существенные увеличения нагрузочного момента при резких изменениях режима работы. Когда двигатель работает при скольжении, меньшем s кp , но близком к нему, случайная перегрузка двигателя может привести к его остановке при Мст > M max . Поэтому максимальный момент иногда называют опрокидывающим моментом.

При больших перегрузках устойчивость работы двигателя обеспечивают путем выбора номинального момента М ном max . Отношение k м = M max /М ном , называемое перегрузочной способностью, регламентируется ГОСТом. Перегрузочная способность для различных двигателей различна: k м = 1,7 ÷ 3,5. Большие значения имеют двигатели, предназначенные для работы с большими перегрузками, — крановые, металлургические и т. п.

Рис. 4.24. Механические характеристики асинхронного двигателя при различных напряжениях

Увеличение перегрузочной способности асинхронного двигателя ведет к возрастанию его габаритов и массы или к снижению энергетических показателей. Из формулы (4.48) видно, что значение максимального момента приблизительно обратно пропорционально индуктивным сопротивлениям Х 1 + Х‘ 2 обмоток. Для увеличения перегрузочной способности двигателя следует уменьшать эти сопротивления, т. е. числа витков обмоток статора и ротора. А это приводит к возрастанию магнитного потока (а следовательно, к увеличению сечения магнитопровода) и тока холостого хода. Поэтому двигатели с повышенным значением k м имеют большие габариты и массу, а ток холостого хода у них достигает 40 — 60% от номинального.

Большое значение для обеспечения устойчивой работы асинхронных двигателей имеет качество электроснабжения. Вращающий момент асинхронного двигателя зависит от квадрата питающего напряжения [см. (4.56) и (4.48)]. Поэтому даже незначительное уменьшение напряжения влияет на максимальный момент, а значительное уменьшение может вызвать остановку двигателя.

На рис. 4.24, а и б для примера приведены механические характеристики асинхронного двигателя при номинальном напряжении U l = U ном (кривая 1) и напряжении U l = 0,7U ном (кривая 2). Во втором случае электромагнитный момент уменьшается примерно в два раза, и работа двигателя при номинальной нагрузке становится невозможной. ГОСТом установлено, что длительное изменение напряжения в электрических сетях, питающих силовое оборудование, не должно отличаться от номинального более чем на — 5% и +10%.

Источник

Adblock
detector