Что охлаждает двигатели насосов

Система охлаждения насосных агрегатов и электродвигателей

Система оборотного водоснабжения магистральных насосных агрегатов (см. рисунок 5.3) предназначена для обеспечения охлаждения обмоток электродвигателей основных магистральных насосов и маслоохладителей с водяным охлаждением. Охлаждение нагретой воды производится в капельной градирне. Схема оборотного водоснабжения включает в себя градирню 5, два водяных насоса 6, аккумулирующую емкость, трубопроводы подачи 8 и возврата 9 воды, запорно-регулирующую арматуру, контрольно-измерительные приборы и приборы автоматики.


Рисунок 5.3 — Принципиальная схема системы водяного охлаждения насосного агрегата:
1 — нефтяной насос; 2 — подшипник промежуточного вала; 3 — промежуточный вал; 4 — электродвигатель; 5 — градирня; 6 — водяной насос; 7 — маслоохладитель; 8 — нагнетательная линия системы; 9 — всасывающая линия

Для охлаждения насосно-силовых агрегатов используется техническая вода из пожарного водопровода.
Качество воды должно соответствовать следующим нормам:

  • содержание механических примесей в воде должно составлять не более 25 мг/л;
  • временная жесткость не более 3 ммоль/кг;
  • кислоты и другие вредные вещества — отсутствуют;
  • содержание железа не более 0,2 ммоль/кг;
  • допустимое содержание масла — следы.

Система оборотного водоснабжения работает следующим образом. Охлажденная в градирне вода забирается водяным насосом и подается в нагнетательную линию водопровода. Она проходит через маслоохладитель (если маслоохладители с водяным охлаждением), а затем подается в рубашки охлаждения электродвигателя, насоса и подшипников промежуточного вала, а оттуда поступает в градирню.

В качестве водяных насосов используются консольные насосы типа КМ 100-80 с подачей Q = 100 м 3 /ч и напором Н = 32 м.

Расчет системы оборотного водоснабжения выполняется в соответствии с уравнением теплового баланса:

q = n (qн + qдв + qтр) + q3 = Qв ρ в Cв Δ tв, (5.6)

где q — количество тепла, которое необходимо отвести; n — число работающих агрегатов; qн — тепло, которое необходимо отвести от насоса:

qдв — тепло, которое необходимо отвести от двигателя:

qдв = Nдв(1 – ηдв); (5.8)

qтр— тепло, которое необходимо отвести от передачи:

qтр = Nнтр(1 – ηтр); (5.9)

Nн, Nдв, Nнтр — мощность насоса, двигателя и передачи соответственно; ηн, ηдв, ηтр — кпд. насоса, двигателя и передачи соответственно; q3 — тепло, отводимое от масла, определяется по формуле (5.3).

Расчет системы оборотного водоснабжения заключается в определении расхода охлаждающей воды, а также потерь напора в системе и подборе насосного оборудования.

Подготовка и пуск системы в работу должны содержать следующее:

  • Перед пуском система оборотного водоснабжения проверяется на плотность фланцевых соединений и арматуры путем внешнего осмотра,
  • Необходимо проверить уровень воды в аккумулирующей емкости и при необходимости заполнить ее до верхнего уровня.
  • Необходимо проверить правильность положения запорной арматуры: все вентили в замкнутой системе вентиляции должны быть открыты, а вне системы — закрыты.
  • Проверить защиты системы водоснабжения.
  • Включить насос системы охлаждения.
  • Осмотреть водопроводы и оборудование системы и убедиться в отсутствии утечек воды. Выявленные утечки устранить.
  • Убедиться в том, что потери давления в системе не превышают установленного значения, в противном случае произвести очистку фильтрующих сеток на приемном патрубке насоса.
  • Пуск системы оборотного водоснабжения производится не менее чем за 15 минут до пуска основных насосных агрегатов станции.

В период эксплуатации системы оборотного водоснабжения обслуживающий персонал обязан:

  • контролировать техническое состояние и параметры работы системы оборотного водоснабжения (давление, температуру воды);
  • регулярно проверять герметичность фланцевых соединений и запорной арматуры; выявленные утечки устранять;
  • регулярно осуществлять контроль уровня воды в аккумулирующей емкости, при необходимости производить дополнение воды из водопровода;
  • проверять охлаждающую воду на отсутствие в ней следов масла; появление масляных пятен свидетельствует о нарушении герметичности водяных маслоохладителей;
  • выполнять аварийную остановку системы в следующих случаях:
  • отказ водяных насосов;
  • падение давления в системе ниже установленного значения;
  • пожара в насосном зале;
  • исчезновения напряжения в системе электроснабжения;
  • сильного шума, треска и вибрации, а также нарушения целостности корпуса водяного насоса;
  • поломки вала или муфты водяного насоса;
  • неисправности электродвигателя насоса;
  • нарушения герметичности водопроводов.

Основные неисправности системы охлаждения, приборы и методы обнаружения, а также возможные причины представлены в таблице 5.3.

— Признаки неработоспособности системы охлаждения

Признак неработоспособности Приборы и методы контроля Причина неработоспособности
Перегрев обмоток статора и ротора при прочих устраненных причинах Термометр сопротивления Неисправность в системе охлаждения, например, водяного насоса
Течь воды из трубопроводов Визуальный Для определения места утечки испытать гидравлическим способом давлением 0,5 МПа Негерметичность трубопроводов
Уменьшение разности между температурой охлажденной воды и воды перед охладителем, перегрев электродвигателей при прочих устраненных причинах Термометры сопротивления или другого типа Засорение трубок водоподачи; трубки промыть слабым раствором соляной кислоты (3–5 %) и прочистить специальными щетками
Давление воды в коллекторе водяного насоса менее номинального По показаниям манометров Недостаточно воды в емкости Неисправен водяной насос Засорение коллектора

Техническое обслуживание, плановый диагностический контроль и ремонт системы оборотного водоснабжения выполняются со следующей периодичностью: техническое обслуживание и диагностический контроль — 700 ч, текущий ремонт — 4200 ч (не реже 1 раза в год), а капитальный ремонт — 25200 ч (не реже 1 раза в 3 года).

Задание.

1. Изучить теоретическую часть.

2. Начертить схему системы оборотного водоснабжения насосных агрегатов.

3. Описать возможные неисправности в работе системы оборотного водоснабжения.

Источник

Как работает система охлаждения двигателя?

Наряду с мощностью двигатели внутреннего сгорания выделяют значительное тепло. Они выделяют столько тепла, что, если оно не будет надлежащим образом отведено, это может привести к повреждению двигателя без возможности ремонта. Чтобы решить эту проблему, каждый двигатель имеет систему охлаждения.

В то время как в старых машинах использовались двигатели с воздушным охлаждением, практически каждый современный автомобиль использует жидкостное охлаждение для рассеивания тепла, создаваемого сгоранием бензина, и трением движущихся частей.

Читайте также:  Как разобрать двигатель 271

Как работает система охлаждения двигателя?

Компоненты системы охлаждения включают в себя радиатор, один или несколько вентиляторов, шланги, водяной насос и термостат, а также переливной резервуар. Охлаждающая жидкость представляет собой смесь воды и антифриза, которая не только предотвращает замерзание жидкости, как следует из ее названия, но и содержит химические вещества для уменьшения коррозии и накопления накипи. В некоторых юрисдикциях, таких как Британская Колумбия, требуется, чтобы антифриз включал добавку с горьким вкусом.

Для выполнения своей работы охлаждающая жидкость движется непрерывным циклом и проталкивается водяным насосом через двигатель. Двигатель содержит внутренние полые конструкции, называемые водяными рубашками. Через них протекает охлаждающая жидкость, поглощая его избыточное тепло. Затем она проходит через шланги к радиатору и там остывает. Оттуда антифриз возвращается в двигатель, где заменяет горячую охлаждающую жидкость, чтобы повторить процесс.

При этом радиатор охлаждает горячую жидкость, используя более холодный воздух, который поступает через решетку автомобиля. Хладагент течет через узкие трубки внутри радара, чтобы тепло могло рассеиваться как можно быстрее. Если через решетку не поступает достаточное количество воздуха, например, когда автомобиль работает на холостом ходу, вентилятор позади радиатора пропускает через него воздух.

Примечание: какая-то часть горячей охлаждающей жидкости отводится прямо из двигателя в небольшие шланги, которые подводят ее к сердечнику нагревателя — это миниатюрная версия радиатора. Когда охлаждающая смесь проходит через нее, это тепло отводится в кабину для системы климат-контроля.

Но хотя двигатель не должен быть горячим, также он не может быть слишком холодным. Хотя диапазон для работы мотора варьируется в зависимости от модели, минимальная температура обычно составляет от 85 C до 95 C.

Вентиляторы радиатора

Еще один важный элемент системы охлаждения. Они стоят на стороне, около двигателя, внутри металлического или пластикового корпуса, предназначенного для защиты пальцев и выпрямления потока воздуха в системе. Эти вентиляторы нужны для создания потока воздуха, проходящего через радиатор, пока автомобиль медленно едет или останавливается при работающем двигателе.

В старых системах вентилятор был подключен к передней части водяного насоса и вращался, когда двигатель работал, потому что он приводился в движение ремнем вентилятора вместо электрического двигателя. В этих случаях, если водитель заметит, что двигатель начинает сильно нагреваться при остановке и начинает движение, водитель может включить автомобиль в нейтральное положение и завести двигатель, чтобы заставить вентилятор вращаться быстрее, что поможет охладить двигатель.

Электрические вентиляторы контролируются внутренней программой и компьютером. Датчик температуры показывает температуру мотора и отправляет данные на главный процессор. После этого система определяет, стоит ли включить вентилятор, и активирует его реле, если двигателю необходим дополнительный поток воздуха.

Как узнать количество антифриза в охладительной системе?

Проверить, достаточно ли охлаждающей жидкости, легко. Найдите пластиковый резервуар в отсеке двигателя и проверьте уровень жидкости по линиям, отмеченным сбоку. На старых автомобилях вы должны снять крышку давления в верхней части радиатора. Кстати это может быть опасно, если система охлаждения перегрета, так как охлаждающая жидкость с кипящей температурой может взорваться, как гейзер.

Соотношение воды и антифриза влияет на способность охлаждающей жидкости противостоять замерзанию — как ни странно, чистый антифриз замерзает чуть ниже 0 C, а добавление к нему воды снижает температуру замерзания полученной смеси. Чтобы узнать, нужно ли вам добавлять воду, проверьте этикетку на бутылке.

Примечание: ингибиторы ржавчины охлаждающей жидкости со временем выходят из строя, и вы должны промыть систему и наполнить ее свежим антифризом в соответствии с графиком технического обслуживания.

Рекомендации по замене охлаждающей смеси

  • Следует периодически проверять различные периферийные устройства системы охлаждения, чтобы убедиться, что они в хорошем состоянии. Змеевик, который вращает водяной насос, не должен быть сломан или изношен. Шланги нагревателя должны быть гибкими, не рыхлыми или ломкими, а зажимы, удерживающие их на месте — плотными. Любые утечки должны незамедлительно устраняться, так как автомобиль, работающий на низких оборотах охлаждающей жидкости, может перегреться.
  • При этом антифриз может протекать через прокладку головки двигателя и тогда вы увидите белый дым из выхлопной трубы, если двигатель нагреется (белый выхлоп, если холодный, как правило, безвредный, т. к. сгорает конденсат), или почувствуете сладкий, жженный запах.
  • Если у вашего автомобиля стоит датчик температуры и он слегка поднимается при интенсивном использовании, например, при буксировке или при движении по крутому склону в жаркую погоду — это вполне допустимо. Но если он поднимается слишком далеко или загорается сигнальная лампа, остановитесь, выключите автомобиль и поднимите капот.

Можно ли смешивать различные антифризы?

Существует три типа охлаждающих жидкостей, и их смешивание может привести к дорогостоящим проблемам. Все они делают одно и то же — остаются в жидком состоянии при экстремально низких температурах, сопротивляются кипению при более высоких температурах, смазывают движущиеся части и противостоят коррозии. И хотя традиционный этилен-гликолевый теплоноситель по-прежнему имеет зеленый цвет, два других типа антифриза (технология с использованием органической кислоты) и гибридный — различаются по оттенку от розовато-оранжевого до красновато-фиолетового.

Смешивание зеленого с любым другим антифризом может вызвать химические реакции, приводящие к накоплению осадка, который может ограничить поток охлаждающей жидкости, а это приведет к перегреванию двигателя. При этом старые двигатели, которые все еще используют большое количество латуни в конструкции радиатора и сердечника нагревателя, выигрывают от использования зеленой охлаждающей жидкости, в то время как более новым автомобилям с достаточным количеством алюминиевых деталей требуется защита от коррозии, присутствующая в смесях OAT или HOAT.

Источник

Как устроена система охлаждения двигателя автомобиля?

В фокусе внимания — виды и устройство систем охлаждения двигателя (жидкостная и воздушная), а также распространённые неисправности.

Система охлаждения двигателя внутреннего сгорания автомобиля (СО) – это конструктивное решение, которое отводит от двигателя транспортного средства излишки тепла и передаёт их в окружающую среду, а также позволяет двигателю оперативно прогреться. Именно возможность быстро прогреться, достигнув оптимального уровня рабочей температуры, и поддержка этой температуры на заданном уровне — одни из важнейших факторов эффективной работы ДВС.

Назначение системы охлаждения двигателя — предотвращение повреждений деталей двигателя автомобиля в результате его перегрева и износа, охлаждение отработавших газов, масла в системе смазки.

Читайте также:  Тех характеристики двигатель рено f3r

Виды систем охлаждения двигателя (жидкостная и воздушная)

Системы охлаждения (СO) ДВС транспортных средств бывают разных видов:

  • Воздушными.
  • Жидкостными (функционирующими на воде, антифризах).
  • Гибридными.

Воздушная СО – это конструкция, которая обеспечивает отвод излишек тепла от цилиндров и стенок камер с помощью принудительного потока воздуха. Принуждение возникает за счет вентиляторов. Они могут быть автономными или объединёнными с маховиком. Воздух может нагнетаться или просасываться.

Наиболее активно воздушные системы охлаждения двигателя устанавливались на авто в шестидесятые годы прошлого века. В том числе, такое решение было популярно у заводов, выпускающих Volkswagen, Citroën, Honda, Porsche. Но со временем у легковых автомобилей двигатели с воздушным охлаждением стало возможно встретить всё реже. Это легко объяснить тем, что большинство легковых авто, появившихся позже, в том числе, современные легковые авто – это, преимущественно, переднеприводные модели с поперечным расположением ДВС. При такой системе трудно организовать эффективную систему воздушного охлаждения.

К тому же, при воздушном охлаждении производители вынуждены существенно увеличивать габариты двигателя, а вместе с ним возрастает и уровень шума. Но на сельскохозяйственные, коммунальные машины, скутера, мотоблоки такие СО по-прежнему ставят. Правда, даже у тракторов их можно встретить уже очень редко.

Вторая же разновидность СО – жидкостная система охлаждения двигателя – это система, где есть промежуточный теплоноситель (жидкость – антифриз). Именно антифриз основательно «прорабатывает» толщь стенок блока цилиндров. Роль отводящего агента у большинства СО такого типа при этом опять-таки играет воздух. Поэтому часто системы называют не просто жидкостными, а комбинированными, гибридными. С точки зрения физики, это действительно верно (и более грамотно), но при этом, так как жидкостные системы в чистом виде (без отводящего агента в виде воздуха) сейчас не используются (первые системы были именно непосредственно жидкостными и работали исключительно на воде), в том, что жидкостными и гибридными МО называют на практике одни и те же решения, ничего зазорного нет.

Потоки жидкостной СО

Жидкостные системы охлаждения двигателей могут быть с параллельными, последовательными и смешанными потоками.

Параллельные потоки. Антифриз под давлением поступает в блок цилиндров, проходит через отверстия прокладки головки блока и в головку блока.

Последовательные потоки. Жидкость поступает к задней части блока цилиндра, а затем перетекает в головку блока цилиндров. Здесь она течет вокруг каждого цилиндра и только потом через перекрестные проходы попадает во коллектор впуска.

Смешанные потоки. У некоторых ДВС потоки теплоносителя объединены. Вентиляционные отверстия берут на себя функцию выпуска пара.

Устройство системы охлаждения двигателя

Сначала затронем конструирование устройства системы охлаждения. При конструировании системы охлаждения производители учитывают целый комплекс факторов:

  • тепловая мощностью ДВС (быстрота выделения тепла),
  • габаритов радиатора, вентилятора и водяной помпы,
  • давления в СО,
  • конструктивных особенностей термостата.

Если проектируется жидкостная система, учитывается тип охлаждающей жидкости – антифриза: этиленгликолевый (карбоксилатный, лобридный, комбинированный), пропилен-гликолевый.

Если проектируется воздушная СО, обязательно учитывается температура и влажность окружающего ДВС воздуха.

При конструировании воздушных систем специалисты заинтересованы, в первую очередь, обеспечить подачу воздуха к:

  • перемычкам между гнездами клапанов (самым горячим местам головки цилиндров), если речь касается бензиновых ДВС.
  • форсункам, если в фокусе внимания – дизельные двигатели.

Обязательно учитываются параметры оребрения двигателя. Идеальный вариант – брать в расчет показатели аэродинамического сопротивления оребрения двигателя, но на практике чаще берется всё-таки удельная поверхность оребрения. Учитывать показатели аэродинамического сопротивления, когда речь идёт о достаточно простой и недорогой технике достаточно нерационально. И проще пожертвовать именно этим параметром.

Как устроена система охлаждения двигателя автомобиля, работающего на антифризе?

В зависимости от того, какое охлаждение – воздушное или на антифризе, отличается схема системы охлаждения двигателя.

Итак, общее устройство системы охлаждения двигателя автомобиля, работающего на антифризе состоит из следующих элементов:

1. «Водяная рубашка». Полости между двойными стенками двигателя, имеющие сообщение друг с другом. Расположены в зонах присутствия избытка тепла. Фактически это всё пространство вокруг цилиндров ДВС, заполненное охлаждающей жидкостью.

2. Термостат. Специальный клапан между «рубашкой» ДВС и входным патрубком устройства радиатора. Когда клапан открывается, для охлаждающей жидкости возникают все условия, чтобы она беспрепятственно попадала в радиатор. Излишки жидкости возвращаются в водяную рубашку через обводный канал. В зависимости от конструктивных особенностей СО, модели силового агрегата, компоновки ДВС термостат может иметь разную локацию. Чаще всего термостат расположен в зоне выхода антифриза из головки блока цилиндров.

3. Радиатор. Устройство, предназначенное непосредственно для отдачи (отвода) тепла в атмосферу и охлаждения жидкости внутри каналов. Представляет собой конструкцию из трубок, спаянных в виде прямоугольника, крепящегося на двух бачках. Изготавливается из металла (меди, алюминия), нескольких металлов (медь + латунь), комбинации металла и пластика. Большинство современных радиаторов – с алюминиевой сердцевиной с бачками из армированного пластика. В этом случае деталь обладает более высокими показателями коррозионной стойкости и теплопроводности. Устройство монтируется в зоне, которая лучше всего обдувается. Идеальный вариант – зона в подкапотном пространстве спереди автомобиля (причем к такому конструкционному решению инженеры нередко прибегают даже, если ДВС имеет заднее расположение). У некоторых автомобилей радиаторы устанавливаются возле боковых стенок авто. Но как правило, в этом случае о обдуве заботится воздухозаборник, а радиаторов – несколько. Такой вариант можно встретить у спорткаров.

Теплоноситель может поступать в радиатор сверху и направляться вниз в основной бочок, а может двигаться от одной стороны устройства к противоположной его стороне (СО с поперечным потоком). На подавляющее большинство современных СО монтируют радиаторы именно с поперечным потоком.

У большинства радиаторов горловина имеет крышку, оснащённую подпружиненным клапаном, предназначенного для герметичного закрытия вентиляционных каналов СО. Это конструктивное решение необходимо для поддержания оптимального рабочего давления. Наиболее распространёнными и внушающими доверие пользователям радиаторами являются устройства торговых марок Behr Hella, DENSO, LUZAR, Stellox, SAT, AVA.

4. Вентилятор – устройство, помогающее усилить поток набегающего воздуха на радиатор. Воздушный поток направлен по направлению к двигателю. Запускается за счёт муфты (электромагнитной, гидравлической от сигнала датчика при превышении порогового значения температуры охлаждающей жидкости. На большинстве современных транспортных средств стоят электровентиляторы: один или несколько (один непосредственно для охлаждения, другой – для работы с высокими температурами). На транспортных средствах с продольным расположением ДВС и задним приводом также можно встретить термостатический вентилятор охлаждения (вентилятор с термостатической пружиной). Он запускается ремнем от коленчатого вала.

Читайте также:  Двигатель нагревается в салоне холодно

6. Расширительный бачок с подпружиненными клапанами. Присутствует у систем с радиатором без заливной горловины.

7.Температурный датчик. Присутствует у авто с электронным блоком управления. Сигналы с датчика поступают непосредственно на ЭБУ, а затем на исполнительные устройства (например, вентилятор).

Устройство воздушной СО

Если же перед нами устройство воздушной системы охлаждения, где теплоносителем выступает непосредственно поток воздуха, то устройство включает следующие элементы:

  • вентилятор, состоящий из диффузора с неподвижными лопастями (направляют воздух) и ротора. Как правило, запускается при помощи ремня и работает от шкива коленвала охладительные ребра цилиндров и головки (или головок),
  • съемный кожух,
  • дефлекторы (монтируются непосредственно над вентканалом) и контрольные приборы.

Принцип работы системы охлаждения двигателя автомобиля на антифризе

Принцип работы системы зависит от того, что является теплоносителем.

Работа системы охлаждения двигателя на антифризе:

  • Антифриз циркулирует (движется по маршруту) принудительно.
  • Движение жидкости производится через «рубашку охлаждения» двигателя.
  • Охлаждение ДВС и нагрев охлаждающей жидкости осуществляются синхронно.
  • Антифриз к водяной рубашке движется от первого цилиндра к последнему или от выпускного коллектора к впускному (в зависимости от потоков)
  • Жидкость циркулирует по малому (до нагрева) или большому кругу (после нагрева).Свой путь антифриз начинает по большому кругу. Путь к маломому кругу до достижения определённой температуры жидкости недоступен, это происходит благодаря закрывающемуся клапану. Когда температура, напротив, падает, то клапан срабатывает снова, и рабочим путем антифриза, как и в начале работы, становится малый круг.
  • В момент запуска ДВС антифриз – холодный. При включении системы он нагревается, проходит через радиатор, охлаждается встречным потоком воздуха, в том числе, при необходимости – потоком воздуха от вентилятора.

Проходя путь через рубашку охлаждения блока цилиндров и головки цилиндров, жидкость в СО сначала увеличивается, а затем после прохождения радиатора охлаждается до начального уровня.

  • Чаще всего у ДВС горячая охлаждающая жидкость выходит из корпуса термостата (температурно-регулирующего клапана), протекает через радиатор поток жидкости охлаждается потоком воздуха,
  • Назад жидкость возвращается через выходной патрубок основного бачка и через шланг идёт к входному патрубку циркуляционного насоса. Он и прогоняет поток жидкости через рубашку охлаждения двигателя. На некоторых двигателях (например, Chrysler и General Motor’s) альтернативой термостату выступает водяной насос.

Схема работы СО следующая:

  • Вентилятор создает поток воздуха
  • Наружная область блоков цилиндров и головки омываются мощным потоком воздуха,
  • Излишки тепла направляются в атмосферу.

Важно! Воздушный поток целенаправленно направляется на наиболее нагреваемые детали – цилиндры и головки. Степень интенсивности охлаждения зависит от того, какие стоят вентиляторы, и как организовано направление потока воздуха. Распределить воздух на все детали ДВС помогают тонкие пластины-дефлекторы.

Степень интенсивности охлаждения, а значит, и результат, напрямую зависит от организации направления потока воздуха и расположения вентилятора.

Неисправности в системе охлаждения

Не секрет, что именно на СО приходится около 25 – 30% неисправностей ДВС. И, если регулярно не проводить диагностику, не принимать меры, можно «нарваться» на дорогостоящий ремонт.

Если же всё делать своевременно, то решением проблемы может стать замена небольшой детали или даже просто регулировка одного из узлов.

Популярные неисправности в системе охлаждения:

  • Проблемы со шлангами . Износ, потеря герметичности, повреждение, расслаивание, набуханием материала, влекущее за собой изменение диаметра шланга. Если шланг получит повреждение во время работы двигателя, вся охлаждающая жидкость будет утеряна. Для того, чтобы решить проблему со шлангом, чаще всего требуется его замена, но иногда достаточно решить проблему только с хомутовым соединением.
  • Нарушение герметичности радиатора. Чаще всего под воздействием камней, противогололедных реагентов. Практика показала, что чаще радиатор «летит» в системах без кондиционера (если он есть те же на себя часто берет теплообменник).
  • Зависание» термостата. Если «зависание» происходит в закрытом состоянии, ДВС начинает перегреваться, если открытом – будет проблема с нагревом. Иногда для решения проблемы достаточно регулировки, но часто может потребоваться и замена этого устройства.
  • Течь расширительного бачка (нередкое явление для тех схем системы охлаждения двигателя, где бачок работает под давлением).
  • Потеря герметичности пробки радиатора. При этой неисправности система не сможет обеспечивать повышение температуры кипения жидкости. В зависимости от ситуации проблема может решаться механическим способом, или требуется замена пробки. К пробке ни в коем случае нельзя относится халатно. Именно от неё зависит, удастся ли удержать нужное давление в СО.
  • Воздушная пробка. Приводит к перегреву двигателя либо нарушению прогрева салона (то есть двигатель может хорошо прогреваться, а тепло в салон перестаёт поступать). Для диагностики проверяют уровень антифриза в расширительном бачке, проводят визуальный осмотр. Для решения проблемы ус старых транспортных средств на радиаторе откручивают отточенных навыков: нужно снять пластиковую защиту, демонтировать хомут, подать в бачок воздух посредством компрессора, провести проверку на отсутствие пузырьков воздуха, накинуть на штуцер патрубок, монтировать специальную пробку и запускают двигатель, у современных авто в большинстве случае решение проблемы требует затянуть хомут, довести антифриз до оптимального уровня.
  • Обрыв ремня вентилятора. Распространённая поломка у мототехники, коммунальной техники, где стоит воздушная СО. Об этой неисправности у большинства транспортных средств сигнализирует контрольная лампа. Проблема решается путём замены ремня.
  • Загрязнение патрубков , влекущее за собой попадание в СО посторонних примесей и её выход из строя. Проблема решается путём промывки, удаления ржавчины, шлака, накипи, остатков масла, силикатного геля.

Как систематизировать знания и получить практические навыки по теме?

Изучить тему «Системы смазки и охлаждения» подробно поможет лицензионный обучающий продукт «Автомобильные основы» на платформе LCMS ELECTUDE.

Огромное преимущество использование платформы состоит в том, что вы не просто последовательно получаете необходимый набор знаний, а имеете возможность поработать с устройствами на практике, отточить навыки диагностики и ремонта (платформа располагает встроенным тренажёром).

Платформа адаптивна как для проведения занятий в аудитории, так и дистанционного обучения. Очень удобно, что система располагает продуманной системой тестов. Можно не просто изучить материал, а проконтролировать, как он усвоен, какой реальный прогресс при изучении системы охлаждения двигателя.

Источник