Что нужно для работы теплового двигателя

Тепловой двигатель

Условия, необходимые для работы теплового двигателя

Тепловым двигателем называется машина, в которой происходит превращение энергии, полученной при сгорании топлива, в механическую энергию.

Вещество, производящее работу в тепловых двигателях, называется рабочим телом или рабочим веществом. В паровых двигателях таким рабочим веществом является пар, а в двигателях внутреннего сгорания – газ.

Установим общие условия (относящиеся ко всем тепловым двигателям), которые необходимы, чтобы преобразовать энергию топлива в энергию движения машин и механизмов. Эти условия мы выясним на примере работы паросиловой установки, схема которой изображена на рисунке.

Одна из частей паросиловой установки – топка с паровым котлом С. В котле образуется пар, который под давлением направляется по трубе М в цилиндр паровой машины Е. Здесь пар расширяется и, двигая поршень, совершает работу. Посредством передающего механизма А возвратно-поступательное движение поршня преобразуется во вращательное движение маховика, который приводит в движение рабочие части станков, сельскохозяйственных машин, генераторов тока и т. д.

Реактивные двигатели

Развитие авиации сводится в основном к увеличению скорости, высоты, грузоподъёмности, дальности, надёжности полёта самолётов, что в значительной степени зависит от возможностей совершенствования двигателя.

Двигатели внутреннего сгорания с винтами-пропеллерами уже не обеспечивают увеличения скорости и высоты полёта самолётов. Причина этого заключается в следующем.

В самолёте с воздушным винтом последний, вращаясь, отбрасывает воздух, заставляя его двигаться ускоренно. По третьему закону Ньютона, отбрасываемая масса воздуха действует на винт, толкает его вперёд, создавая этим тягу, движущую весь самолёт. Тяга получается, таким образом, как результат ответного воздействия (реакции) воздуха, отбрасываемого винтом. Винт служит посредником, который за счёт энергии топлива совершает работу по передвижению самолёта.

Коэффициент полезного действия тепловых двигателей

При устройстве тепловых двигателей важно прежде всего добиться, чтобы как можно большее количество энергии сгораемого топлива превратилось в механическую энергию, иначе говоря, при минимальной затрате топлива получилась максимальная работа. Тогда двигатель будет экономичным. Зная количество теплоты Q1, переданное рабочему телу от нагревателя, и количество теплоты Q1 – Q2, превращенное в механическую энергию, можно оценить степень экономичности этого процесса превращения.

Отношение количества теплоты, превращенной машиной о механическую энергию, к количеству теплоты, полученной от нагревателя, называется коэффициентом полезного действия тепловой машины (к. п. д.).

К. п. д. машины принято обозначать буквой η (греч. «эта»):

Изучая условия получения работе за счёт внутренней энергии пара в паровых машинах, Карнов 1824 г. установил, что коэффициент полезного действия любого реального теплового двигателя не может превышать величины (Т1 – Т2) : T1, где Т1 – абсолютная температура нагреватели, а Т2 – абсолютная температура холодильника. Чем ближе к. п. д. двигателя к этой величине, тем двигатель совершеннее. Этот вывод хорошо оправдывается на практике.

Работа при расширении газа

Рассмотрим, как в простейшем случае подсчитать работу, совершаемую газом при расширении.

Представим себе, что в цилиндре под поршнем, площадь которого S, находится какой-нибудь газ, давление которого равно р. Сила, с которой газ давит на поршень, определяется по формуле F = pS. Если нагревать газ при постоянном давлении, то он расширится и поршень переместится на некоторое расстояние h.

Читайте также:  Чем прогреть масло в двигателе зимой

Газ при этом совершит работу А = pSh. Но Sh = V2 – V1 есть увеличение объёма газа, следовательно:

Работа газа при изобарном расширении равна произведению давления газа на увеличение его объёма.

Дизельный двигатель

От чего зависит коэффициент полезного действия двигателя внутреннего сгорания? Как и во всякой тепловой машине, в этом двигателе имеется источник энергии – нагреватель (таким источником является сгорающее топливо) и холодильник – атмосферный воздух. Чем выше разность температур между ними, тем выше к. п. д. двигателя.

Так как температура газов, получающихся при сгорании смеси, велика (порядка 1600–1800 о С), то к. п. д. двигателей внутреннего сгорания значительно выше к. п. д. паровых машин. На практике к. п. д. двигателей внутреннего сгорания достигает 20–30%.

Как можно ещё повысить к. п. д. этого двигателя? Опыт и расчёты показывают, что для этого нужно добиться большей степени сжатия смеси. Однако в двигателях карбюраторного типа очень сильно сжимать горючую смесь нельзя, так как она, сильно нагреваясь, будет преждевременно самовоспламенятся.

Немецкий инженер Дизель изобрёл двигатель, названный его именем, работающий по такому циклу, который позволяет избежать указанных выше затруднений и значительно повысить к. п. д.

Паровые турбины

Среди тепловых двигателей важное место занимают паровые турбины. В отличие от поршневых паровых двигателей в паровых турбинах используется не энергия упругости пара, а кинетическая энергия струн пара.

Предположим, что давление пара в котле равно р1. Предоставим пару возможность свободно вытекать из котла через какое-либо отверстие или через насадку – сопло. При истечении через сопло давление пара будет падать, и в устье сопла оно окажется равным некоторому давлению р2. Вначале скорость пара равна нулю, при выходе же из сопла она увеличивается; при этом давление пара в сопле падает.

Потенциальная энергия пара при падении его давления уменьшается; соответственно увеличивается кинетическая энергия пара (по закону сохранения и превращения энергии). Вытекающий из сопла пар попадает на лопатки рабочего колеса и приводит его во вращение.

Схема действия одного из типов турбин представлена на рисунке. На валу А насажен диск В, по ободу которого закреплены лопатки L. Против лопаток расположены сопла С, в которые пар поступает из котла. В соплах пар расширяется и, выходя из их устьев с большой скоростью, попадает в каналы, образуемые лопатками, где теряет часть своей кинетической энергии, которая идёт на приведение диска В вместе с валом во вращательное движение. Па рисунке изображено колесо однодисковой турбины Лаваля (без кожуха).

Двигатель внутреннего сгорания

В паровых машинах и паровых турбинах для преобразования энергии топлива в механическую энергию используют водяной пар, который получается в паровых котлах. Наряду с этим существуют тепловые двигатели, в цилиндрах которых одновременно протекают процессы сгорания топлива, выделения при этом энергии и совершения за счёт части её механической работы; такие двигатели называются двигателями внутреннего сгорания. В этих двигателях используется жидкое или газообразное топливо. Жидкое топливо перед сжиганием испаряется или распыляется в воздухе.

Рассмотрим устройство четырёхтактного карбюраторного автомобильного двигателя. Принцип действия двигателей, применяемых на тракторах и самолётах, сходен с автомобильным.

Схема четырёхтактного двигателя внутреннего сгорания и диаграмма работы такого двигателя изображены на рисунке.

Из схемы видно, что внутри цилиндра А может свободно перемещаться поршень В. В верхней части цилиндра имеются два клапана. Через клапан Д производится впуск так называемой горючей смеси, состоящей из воздуха и мельчайших частиц жидкого или газообразного топлива. Клапан Е служит для удаления из цилиндра отработавших газов; С – запальник (свеча), назначение которого – воспламенять находящуюся над поршнем смесь.

Читайте также:  Ремонт двигателя ока ваз 1113 своими руками

Паровые котлы

Одна и основных частей паросиловой установки – котёл. Каждый паровой котел состоит из топки для сжигания топлива, топочного пространства, барабана котла с водяным и паровым пространством, герметически закрытым. Всякий котёл обладает определенной производительностью, измеряемой количеством воды, которую он способен испарить в течение часа при определенных температуре и давлении. Часть котла, которая во время топки приходит в соприкосновение с пламенем, называется поверхностью нагрева.

На рисунке изображен дымогарный котёл. Внутри этого котла помещён ряд трубок А, по которым продукты горения проходят в дымовую коробку В, откуда попадают в дымовую трубу. Такие котлы устанавливают на локомобилях и на паровозах. Многочисленные дымогарные трубки дают огромную поверхность нагрева, с помощью которой в большей степени полезно используется энергия, получающаяся при сгорании топлива. Вода в этих котлах находится между дымогарными трубками.

Можно сделать котлы иначе: по трубкам пустить воду, а между трубками пламя. Такие котлы называются водотрубными.

Виды реактивных двигателей

Все разнообразные виды реактивных двигателей состоят из следующих основных частей: 1) бака с топливом, 2) камеры, где это топливо сгорает, 3) устройств, обеспечивающих подачу топлива в камеру сгорания и истечение продуктов сгорания. В зависимости от вида используемого топлива реактивные двигатели разделяются на две большие группы: двигатели на твёрдом топливе, двигатели на жидком топливе.

Простейшим примером двигателя на твёрдом топливе служит пороховая ракета. В ракете при сгорании пороха образуются газы, которые выбрасываются из тела ракеты, создавая реактивную тягу.

В жидкостных реактивных двигателях (ЖРД) сгорают жидкие горючие вещества (нефтепродукты, спирт и т. д.). Жидкостные реактивные двигатели применялись в конце второй мировой войны для самолётов–снарядов дальнего действия. Скорость самолётов-снарядов достигала 5400 км/ч при дальности полёта 290-300 км и высоте траектории 100 км.

К этому же роду двигателей относится ракетный двигатель для межпланетных сообщений, изобретённый К. Э. Циолковским.

Паровая машина

В паровой машине энергия пара непосредственно преобразуется в энергию движения поршня.

На рисунке изображена схема устройства одноцилиндровой паровой машины. Пар из парового котла по трубе А поступает в парораспределительную коробку В, а оттуда в рабочий цилиндр С – попеременно то с одной, то с другой стороны поршня. Распределение пара производится с помощью золотника Z.

Когда пар поступает в правую часть цилиндра, то он толкает поршень влево, а отработавший пар вытесняется и выходит через выводную трубу (на рисунке эта труба не показана). Затем, наоборот, пар поступает в левую часть цилиндра и толкает поршень вправо.

При помощи штока Е, шатуна F и кривошипа К возвратно-поступательное движение поршня превращается во вращательное движение вала машины и махового колеса. В свою очередь маховое колесо через передающий механизм L и М перемещает золотник, который поочерёдно впускает пар то с правой, то с левой стороны поршня.

Источник

Что нужно для работы теплового двигателя

§ 28. Условия, необходимые для работы теплового двигателя

Машины, в которых внутренняя энергия топлива превращается в механическую, называются тепловыми двигателями. К ним относятся: двигатели внутреннего сгорания, паровая и газовая турбины, реактивные двигатели. Выясним, какие необходимы условия для того, чтобы в тепловом двигателе внутренняя энергия топлива превращалась в механическую энергию рабочего вала двигателя.

Читайте также:  Медленно падают обороты двигателя при переключении передач приора

Вещество, которое совершает работу в тепловом двигателе, называется рабочим телом. В паровых двигателях таковым является пар, а в двигателе внутреннего сгорания, реактивном двигателе и в газовой турбине — газ. Как показывает теория тепловых двигателей, чтобы рабочее тело непрерывно совершало в них работу, необходимо наличие в двигателе нагревателя и холодильника. Устройство, в котором рабочее тело нагревается за счет энергии топлива, называется нагревателем (паровой котел, цилиндр). Устройство, в котором рабочее тело после совершения работы охлаждается, называется холодильником (атмосфера, конденсатор, в котором отработавший пар охлаждается проточной водой и превращается в воду).


Рис. 30 Принцип действия теплового двигателя

Проделаем следующий опыт (рис. 30). Возьмем U-образную трубку с водой. Одно колено трубки соединено с теплоприемником (в котором находится рабочее тело — газ), в другом колене имеется поплавок А. Попеременно теплоприемник будем нагревать спиртовкой и опускать в холодную воду. Спиртовка выполняет роль нагревателя рабочего тела, холодная вода — роль холодильника. Работа такой модели теплового двигателя заключается в повторяющемся процессе — поднятии и опускании воды вместе с поплавком. Это происходит так: рабочее тело (газ), нагреваясь в нагревателе и расширяясь, совершает работу по поднятию воды с поплавком; для того чтобы рабочее тело снова могло совершить работу, его охлаждают в холодильнике, а затем опять нагревают. Пока этот процесс будет повторяться — модель такого двигателя будет действовать.

Тепловой двигатель работает непрерывно. Так происходит, потому, что в нем процессы, происходящие с рабочим телом, периодически повторяются: оно нагревается, расширяясь, совершает работу, охлаждается, снова нагревается и т. д. (Проследите это в работе двигателя внутреннего сгорания. Значит, для работы теплового двигателя необходимо иметь: нагреватель, рабочее тело и холодильник.

Для периодически повторяющихся процессов был открыт закон, по которому невозможно осуществить такой периодически повторяющийся процесс, единственным и конечным результатом которого было бы полное превращение количества теплоты, полученного от нагревателя, в работу. Применительно к тепловому двигателю это означает: количество теплоты, полученное рабочим телом от нагревателя, не может быть полностью использовано для совершения работы, так как невозможен процесс полного перехода внутренней энергии беспорядочного движения большого числа молекул в механическую энергию движения тела (поршня двигателя, рабочего колеса турбины).


Рис. 31. Схема использования пара теплоэлектроцентрали

Чтобы в реальных тепловых двигателях рабочее тело снова и снова совершало работу, отработавшую порцию рабочего тела удаляют из двигателя в холодильник, т. е. в атмосферу, или в конденсатор для подогрева воды, или для отопления (рис. 31). При этом, чтобы на удаление была совершена как можно меньшая работа, в холодильнике температура и давление всегда меньше, чем в рабочей камере двигателя. Благодаря разнице работы пара и работы по его удалению двигатель и совершает полезную работу. С энергетической точки зрения процесс, происходящий в тепловых двигателях, сводится к следующему (рис. 32): рабочее тело получает от нагревателя количество теплоты Qн, часть которого отдает холодильнику Qx, а за счет оставшейся части совершает работу А = Qн — Qx.


Рис. 32. Условия, необходимые для работы теплового двигателя

Многообразно применение тепловых двигателей. Карбюраторные двигатели, например, применяются в автомобилях, мотоциклах; дизели — в тракторах, автомобилях большой грузоподъемности, тепловозах, теплоходах, морских судах; паровые турбины — на электростанциях; газовые турбины — на электростанциях, газотурбовозах, в доменных печах для приведения в действие воздуходувок, являются частью одного из типов реактивного двигателя; реактивные двигатели — в авиации, в ракетах.

Источник

Adblock
detector