Что нужно для плавного пуска двигателя

Для чего нужен плавный пуск асинхронного двигателя

Из всех видов двигателей асинхронные двигатели получили наиболее широкое распространение в промышленности и продолжают вытеснять все больше и больше двигатели постоянного тока.

Асинхронные двигатели получили широкое распространение благодаря следующим своим качествам: дешевизне двигателя, простоте конструкции, надежности, высокому к. п. д. До настоящего времени асинхронные двигатели уступали место двигателям постоянного тока только в тех случаях, где требовалось плавное регулирование частоты вращения (строгальные станки, правильные машины, регулируемые главные приводы прокатных станов и т. п.), в электрическом транспорте и в приводах большой мощности повторно-кратковременного режима (реверсивные станы). Внедрение в промышленность регулируемых преобразователей частоты позволит, еще шире применять асинхронные двигатели.

Недостатками асинхронных двигателей являются:

1) Квадратичная зависимость момента от напряжения, при падении напряжения в сети сильно уменьшаются пусковой и критический моменты,

2) Опасность перегрева статора, особенно при повышениях напряжения сети, и ротора при понижении напряжения,

3) Малый воздушный зазор, несколько понижающий надежность двигателя,

4) Большие пусковые токи асинхронных двигателей. При пуске асинхронного двигателя с короткозамкнутым ротором ток статора больше номинального в 5 — 10 раз. Такие большие токи в статоре недопустимы по условиям динамических усилий в обмотках и нагрева обмоток. В асинхронных двигателях могут возникать переходные режимы с большими бросками тока не только при подключении двигателя к сети но и при его реверсе и торможении.

Итак, для чего нужно ограничивать пусковой ток в обмотках статора асинхронного электродвигателя с короткозамкнутым ротором?

Необходимость ограничения тока двигателей диктуется причинами электрического и механического характера. Причины электрического характера ограничения тока двигателей могут быть следующие:

1) Уменьшение толчков тока в сети. В некоторых случаях для крупных двигателей требуется ограничить пусковой ток до допускаемого для питающей системы.

2) Уменьшение электродинамических усилий в обмотках двигателя.

Уменьшение толчков тока в сети требуется обычно при пуске крупных асинхронных двигателей с короткозамкнутым ротором, если они получают питание от сравнительно маломощной питающей системы. Кроме того, для крупных двигателей заводы-изготовители машин не разрешают прямой пуск из-за чрезмерно больших электродинамических усилий в лобовых частях обмоток статора и ротора.

Причины механического характера ограничения момента двигателей могут быть самыми разнообразными, например предотвращение поломки или быстрого изнашивания передач, соскальзывания ремней со шкивов, буксования колес подвижных тележек, больших ускорений или замедлений, недопустимых для оборудования или людей в различных средствах передвижения и т. д. Иногда требуется уменьшить пусковой момент двигателей, даже небольших, для того чтобы смягчить удары в передачах и обеспечить плавное ускорение.

Во всех случаях, где условия работы не требуют форсированных ускорений или замедлений, желательно рассчитывать режимы на минимальные броски тока, а следовательно, и момента, сохраняя этим передачи механизма и двигатель.

Устройство плавного пуска двигателя

Для ограничения тока применяются пусковые реакторы, резисторы и автотрансформаторы, а также современные электронные устройства — софт-стартеры (устройства плавного пуска двигателей).

Напряжение на электродвигателе

Необходимо обратить внимание на то, что ограничение тока и момента с помощью устройств плавного пуска двигателей получается за счет усложнения схемы управления и удорожания установки, а потому должно применяться только там, где это обосновано.

Источник

Для чего нужен плавный пуск асинхронного двигателя

Сейчас асинхронные двигатели распространены повсеместно по причине своей низкой стоимости, простой конструкции и высокой надежности. Асинхронные двигатели были лучше двигателей на постоянном токе практически во всем кроме тех моментов, где требовалось плавное регулирование частоты вращения.

Читайте также:  При запуске двигателя включается вентилятор радиатора опель

Устройство плавного пуска ( УПП ) как раз и создано, чтобы убрать недостатки асинхронных двигателей. В этой статье я расскажу вам об УПП подробнее.

Зачем нужно ограничивать пусковые токи

Как известно во время запуска мотора в первые мгновения создается значительный пусковой импульс, который необходим для преодоления нагрузочного момента на валу.

И для того, чтобы сформировать этот импульс, двигателю необходимо довольно большое количество электроэнергии, которую он берет из подключенной сети.

И здесь рождается первая проблема, а именно просадка напряжения, которая негативно может сказаться на нагрузку, подключенную к этой же сети.

Например, сильная просадка по напряжению может спровоцировать увеличение потребления тока подключенных двигателей, что еще больше просадит напряжение и может привести к полной остановке вращающихся механизмов.

Следующим негативным фактором являются значительные пусковые токи, которые при протекании по обмоткам ротора выделяют огромное количество тепловой энергии, что может привести к повреждению изоляции и вследствие этого выхода из строя изделия.

Третьим негативным фактором является вероятность механического повреждения в результате резкого рывка.

Вот для того, чтобы ликвидировать эти негативные факторы, и нужно ограничивать пусковые токи, реализовать так называемый плавный пуск.

Какие способы ограничения пусковых токов существуют

Итак, для того, чтобы плавно запустить асинхронный двигатель и минимизировать бросок тока есть два варианта:

1. В обмотке статора уменьшают ток. Для этого обмотку разделяют на три отдельные катушки и соединяют по системе звезда. При этом свободные концы выводят на коллекторы (контактные кольца), которые зафиксированы на хвостовике вала.

Далее к коллектору подключают реостат, сопротивление которого в первый момент пуска имеет максимальное значение. По мере того как сопротивление реостата снижается ток на роторе увеличивается, а это значит что двигатель начинает раскручиваться.

Такие установки называются двигателями с фазным ротором и активно применяются в кранах, троллейбусах и трамваях.

2. Путем уменьшения напряжения и тока, которые передаются на статор. Такой вариант реализуется так:

— С помощью автотрансформаторов и реостатов.

— Специальными схемами на базе тиристоров или же симисторов. Именно такие ключевые схемы получили название Устройства плавного пуска, ( УПП ) которые так же называют софт-стартерами.

Примечание. Частотные преобразователи тоже позволяют реализовать плавный пуск двигателя, вот только такие регуляторы компенсируют резкий скачок крутящего момента, пусковые токи же остаются такими же высокими.

График изменения напряжения при различных вариантах переключения выглядит следующим образом:

А изменение тока и крутящего момента при этом будет выглядеть так:

Заключение

Как видно плавный пуск асинхронного двигателя имеет явные плюсы за исключением одного, такое усложнение схемы ведет к его удорожанию.

Поэтому прежде чем приступать к реализации плавного пуска следует просчитать, а будет ли выгоден такой «апгрейд» или лучше использовать двигатель на постоянном токе, который позволяет плавно регулировать обороты без значительных финансовых вливаний.

Источник

Обзор устройств плавного пуска –применение, принципы действия, разновидности, схемы включения

Проблема пускового тока

Одна из особенностей работы асинхронного двигателя, которую можно назвать недостатком – большой пусковой ток при старте, который может превышать номинальный в 8 и более раз. Это обусловлено принципом его работы – при подаче на него номинального напряжения он стремится сразу выйти на полную мощность. Данная особенность проявляется в большой мере при пуске через линейный контактор, это также называют прямым пуском двигателя.

В некоторых механизмах принципиально важно, чтобы пуск был плавный, без рывков и ударов. Это касается прежде всего технологического оборудования, у которого высокий момент инерции при запуске. Например, тяжелые маховики и конвейеры с продукцией, а также мощные насосы и вентиляторы.

Иными словами, большой пусковой ток и большой момент инерции механической нагрузки на валу двигателя – взаимосвязанные вещи, от который часто необходимо избавляться.

Читайте также:  Для чего нужна раскоксовка колец в двигателе

Кстати, в некоторых странах законодательно запрещено включать электродвигатели большой мощности прямой подачей напряжения, поскольку это создает помехи, падение напряжения и перегружает электросети, что может вызвать проблемы у других потребителей и даже стать причиной аварий.

Как обеспечить плавный пуск двигателя

Существуют несколько вариантов уменьшения пускового тока, которые используются на практике.

1. Применение преобразователей частоты. В этом случае можно обеспечить сколь угодно долгий разгон, а также ограничить превышение номинального тока, например, на уровне 110%. Это лучший способ плавного пуска, однако, он используется далеко не всегда, поскольку преобразователь частоты – дорогостоящее электронное устройство, которое имеет множество функций. Если нужно только ограничение пускового тока и плавный разгон, преобразователь частоты будет избыточен, и большинство его функций останутся не востребованы.

2. Схема «Звезда – Треугольник». Двигатель при этом должен быть таким, чтобы номинальное напряжение питания при включении его обмоток «треугольником» было 380 В. В этом случае двигатель запускается в два этапа. На этапе разгона обмотки включаются «звездой». Таким образом получается, что 380 В подается на схему, которая для нормальной работы требует напряжения порядка 660 В. Поскольку двигатель в «звезде» работает при пониженном напряжении, разгон (выход на рабочие обороты) получается сравнительно плавным. На втором этапе обмотки включаются «треугольником», и двигатель выходит на свою номинальную мощность. Минус этого способа – разгон получается ступенчатым, а пусковые токи могут принимать большое значение.

3. Когда речь идет только о минимизации пускового тока, наиболее оптимальный вариант – использование устройства плавного пуска (softstarter).

Ниже рассмотрим принципы работы устройств плавного пуска (УПП) и схемы их включения.

Как работает устройство плавного пуска

Рассмотрим пошагово, какие процессы происходят при работе УПП, и какие регулировки влияют на его работу.

В минимальной конфигурации устройства плавного пуска (УПП) имеют три регулировки – время разгона, время торможения, и напряжение пуска.

При включении действующее напряжение на двигателе определяется регулировкой напряжения пуска, которое обычно составляет 30…80 % от номинала. Понижение напряжения и его регулировка производится тиристорами, которые открываются (пропускают ток) только в части полупериода сетевого напряжения. Фазой открытия тиристоров можно менять напряжение на двигателе.

Таким образом, регулируя фазу открытия тиристоров, можно менять ток и крутящий момент двигателя.

В зависимости от конкретного случая может потребоваться большой начальный момент, чтобы двигатель мог тронуться с места. Но для уменьшения пускового тока начальное напряжение лучше устанавливать минимально возможным.

При большом времени разгона пусковой ток будет минимальным. Однако, следует выбирать его оптимальным, обычно 10…20 секунд, в зависимости от типа нагрузки. При слишком большом времени разгона возможен излишний нагрев тиристоров. Критерием оптимального времени разгона служит время выхода двигателя на номинальные обороты и номинальный рабочий ток. По истечении времени разгона включается контактор байпаса, который может быть установлен внутри УПП, или быть внешним. Во время работы двигателя на номинальном режиме весь питающий ток идет только через этот контактор, при этом тиристоры в работе не участвуют.

Если пришел сигнал на остановку двигателя, контактор байпаса выключается. Вступают в работу тиристоры, которые работают в обратном режиме – постепенно уменьшают фазу (время открытия в течение полупериода) с максимальной до нуля. Если время торможения не важно, то можно его установить минимальным (0-2 секунды), это увеличит ресурс тиристоров, и улучшит тепловой режим электрощита в целом. Двигатель будет останавливаться на выбеге, к ак при питании через обычный контактор. Но если важно исключить гидроудар, или плавно замедлить движение объектов без их резкой остановки и падения, то функция плавной остановки будет очень полезной.

В УПП также могут присутствовать такие регулировки: управление крутящим моментом двигателя, конечное напряжение при останове, номинальный ток двигателя, ограничение пускового тока. Современные УПП имеют ЖК-дисплей и кнопки управления, которые позволяют конфигурировать несколько десятков различных параметров для тонкой настройки.

Читайте также:  Ман двигатель как снять помпу

Схемы включения

Как во всех подобных устройствах, в схеме включения УПП имеется силовая часть, и часть управления.

Силовая часть схемы – это та часть, через которую проходит ток питания двигателя. Ток двигателя поступает через силовые клеммы L1, L2, L3 (или R, S, T) на входы тиристоров или контактора байпаса, и затем через выходные клеммы T1, T2, T3 (U, V, W) подается на двигатель.

Схема управления включает в себя в основном цепи запуска и остановки. Напряжение питания цепей управления обычно составляет 24…220 В, и может быть внешним, либо браться из УПП.

С участием УПП можно реализовать схему плавного пуска электродвигателя с реверсом. Для этого нужно на входе установить реверсивный контактор по классической схеме. Важно сделать блокировку для предотвращения реверса двигателя во время его вращения.

Допускается запускать УПП и начинать вращение двигателя подачей питания на цепи управления и силовые цепи. Это может быть удобно при дистанционной подаче силового питания. Однако, при этом следует предусмотреть меры безопасности – обслуживающий персонал должен понимать, что при подаче питания на УПП двигатель может начать вращаться.

Пример схемы

Рассмотрим для примера схему включения УПП ABBPSTX.

В силовую часть входят: автомат защиты двигателя (вводной), тиристоры и контактор байпаса (внутри УПС), и собственно двигатель.

Для питания цепей управления подается фазное напряжение 220В и нейтраль на клеммы 1, 2. В УПП имеется встроенный блок питания, который вырабатывает напряжение 24 В для питания органов управления. Допускается также применение внешнего БП 24 В, при этом напряжение на клеммы 1, 2 подавать не нужно.

При соответствующем подключении и настройках кнопки могут быть как с фиксацией, так и без. Управление может производиться не только с кнопок, но и через контакты реле или контроллера.

Имеются и другие входы для различных режимов работы, а также три выходных реле с сухими контактами, которые могут использоваться по необходимости для включения дополнительных контакторов и индикации.

Защита

В дешевых УПП часто не реализована защита от перегрузки по току, перегреву и короткому замыканию. В таких случаях необходимо устанавливать нужную защиту и включать УПП по схеме, рекомендованной производителем.

В состав защиты могут входить:

  • Мотор-автомат (автомат защиты двигателя),
  • Полупроводниковые предохранители, либо защитные автоматы с характеристикой «В»,
  • Тепловое реле,
  • Короткое либо межвитковое замыкание в обмотках двигателя,
  • Контактор аварийной цепи, выключающий питание УПП при срабатывании внутреннего аварийного реле либо нажатии кнопки «Аварийный останов».

Пример неправильной установки защиты, в результате которой произошел пожар:

Следует сказать, что даже если в УПП входят все виды защит, необходимо на вводе силового питания и питания схемы управления устанавливать соответствующие защитные автоматы либо предохранители.

Двухфазные УПП

В некоторых бюджетных моделях управление выходным напряжением происходит только по двум фазам. Таким образом, происходит экономия на тиристорах и на одном контакте контактора байпаса.

Это решение имеет право на жизнь, и главный плюс таких УПП – цена.

Однако, имеются минусы, о которых стоит знать:

  • При запуске и торможении происходит перекос фаз, который приводит к дополнительному нагреву двигателя,
  • Пусковой ток по «прямой» фазе почти не уменьшается,
  • Постоянное присутствие фазного напряжения на двигателе представляет опасность для персонала.

Заключение

УПП нашли достойное место там, где не нужна регулировка скорости вращения двигателя, но важным аспектом является минимизация пусковых перегрузок питающей сети и приводимых в движение механизмов. Однако, в последнее время их всё больше вытесняют преобразователи частоты, которые имеют гораздо более широкий спектр возможностей управления двигателем.

Источник

Adblock
detector