Что есть ассинхронный двигатель

Типы асинхронных двигателей, разновидности, какие бывают двигатели

Электродвигатели переменного тока, использующие для своей работы вращающееся магнитное поле статора, являются в настоящее время весьма распространенными электрическими машинами. Те из них, у которых частота вращения ротора отличается от частоты вращения магнитного поля статора, называются асинхронными двигателями .

В связи с большими мощностями энергетических систем и большой протяженностью электрических сетей энергоснабжение потребителей всегда осуществляется на переменном токе. Поэтому естественно стремление к максимальному использованию электрических двигателей переменного тока. Это, казалось бы, освобождает от необходимости многократного преобразования энергии.

К сожалению, двигатели переменного тока по своим свойствам, и прежде всего по управляемости, существенно уступают двигателям постоянного тока, поэтому они используются преимущественно в установках, где не требуется регулирование скорости.

Относительно недавно начали активно использоваться регулируемые системы переменного тока с подключением электродвигателей переменного тока через частотные преобразователи.

Асинхронный электродвигатель с короткозамкнутым ротором представляет собой вращающийся трансформатор, первичная обмотка которого — это статор, а вторичная — ротор. Между статором и ротором находится воздушный зазор. Как и в любом реальном трансформаторе, каждая обмотка имеет также и собственное активное сопротивление.

При подключении двигателя в электрическую сеть в статоре возникает магнитное поле, которое вращается синхронно с частотой питающей сети. За счет явления электромагнитной индукции под действием магнитного поля статора в электрически замкнутых обмотках ротора возникает электрический ток.

Наведенный электрический ток ротора создаст собственное магнитное поле, которое вступает во взаимодействие с вращающимся магнитным полем статора. В результате ротор начинает вращаться, и на валу двигателя возникает механический момент, пропорциональный току статора.

Характерной особенностью асинхронного двигателя является то, что за счет взаимодействия полей статора и ротора скорость вращения вала двигателя несколько меньше, чем частота питающей сети. Разность между частотой питающей сети и скоростью вращения называют скольжением.

Очень широко применяются в различных отраслях хозяйства и производства асинхронные двигатели в силу простоты их изготовления и высокой надежности. Между тем, можно выделить четыре основных типа асинхронных двигателей:

однофазный асинхронный двигатель с короткозамкнутым ротором;

двухфазный асинхронный двигатель с короткозамкнутым ротором;

трехфазный асинхронный двигатель с короткозамкнутым ротором;

трехфазный асинхронный двигатель с фазным ротором.

Однофазный асинхронный двигатель содержит на статоре лишь одну рабочую обмотку, на которую в процессе работы двигателя подается переменный ток. Но для пуска двигателя на его статоре есть и дополнительная обмотка, которая кратковременно подключается к сети через конденсатор или индуктивность, либо замыкается накоротко. Это необходимо для создания начального сдвига фаз, чтобы ротор начал вращаться, иначе пульсирующее магнитное поле статора не столкнуло бы ротор с места.

Ротор такого двигателя, как и любого другого асинхронного двигателя с короткозамкнутым ротором, представляет собой цилиндрический сердечник с залитыми алюминием пазами, с одновременно отлитыми вентиляционными лопастями. Такой ротор, типа «беличья клетка» и называется короткозамкнутым ротором. Однофазные двигатели применяются в маломощных приборах, таких как комнатные вентиляторы или небольшие насосы.

Двухфазные асинхронные двигатели наиболее эффективны при работе от однофазной сети переменного тока. Они содержат на статоре две рабочие обмотки, расположенные перпендикулярно, причем одна из обмоток подключается к сети переменного тока напрямую, а вторая – через фазосдвигающий конденсатор, так получается вращающееся магнитное поле, а без конденсатора ротор бы сам не сдвинулся с места.

Читайте также:  Схема управления мостовым краном на асинхронных двигателях с чрп

Эти двигатели также имеют короткозамкнутый ротор, а их применение гораздо шире, чем у однофазных. Здесь уже и стиральные машины, и различные станки. Двухфазные двигатели для питания от однофазных сетей называют конденсаторными двигателями, так как фазосдвигающий конденсатор является зачастую неотъемлемой их частью.

Трехфазный асинхронный двигатель содержит на статоре три рабочие обмотки, сдвинутые относительно друг друга так, что при включении в трехфазную сеть, их магнитные поля получаются смещенными в пространстве относительно друг друга на 120 градусов. При подключении трехфазного двигателя к трехфазной сети переменного тока, возникает вращающееся магнитное поле, приводящее в движение короткозамкнутый ротор.

Обмотки статора трехфазного двигателя можно соединить по схеме «звезда» или «треугольник», причем для питания двигателя по схеме «звезда» требуется напряжение выше, чем для схемы «треугольник», и на двигателе, поэтому, указываются два напряжения, например: 127/220 или 220/380. Трехфазные двигатели незаменимы для приведения в действие различных станков, лебедок, циркулярных пил, подъемных кранов, и т.д.

Трехфазный асинхронный двигатель с фазным ротором имеет статор аналогичный описанным выше типам двигателей, — шихтованный магнитопровод с тремя уложенными в его пазы обмотками, однако в фазный ротор не залиты алюминиевые стержни, а уложена уже полноценная трехфазная обмотка, в соединении «звезда». Концы звезды обмотки фазного ротора выведены на три контактных кольца, насаженных на вал ротора, и электрически изолированных от него.

1 — кожух с жалюзями, 2 — щетки, 3 — щеточная траверса со щеткодержателями, 4 — палец крепления щеточных траверс, 5 — выводы от щеток, 6 — колодка, 7 — изоляционная втулка, 8 — контактные кольца, 9 — наружная крышка подшипника, 10 — шпилька крепления коробки и крышек подшипника, 11 — задний подшипниковый щит, 12 — обмотка ротора, 13 — обмоткодержатель, 14 — сердечник ротора, 15 — обмотка ротора, 16 — передний подшипниковый щит, 7 — наружная крышка подшипника, 18 — вентиляционные отверстия, 19 — станина, 20 — сердечник статора, 21 — шпильки внутренней крышки подшипника, 22 — бандаж, 23 — внутренняя крышка подшипника, 21 — подшипник, 25 — вал, 26 — контактные кольца, 27 — выводы обмотки ротора

Посредством щеток, на кольца также подается трехфазное переменное напряжение, и подключение может быть осуществлено как напрямую, так и через реостаты. Безусловно, двигатели с фазным ротором стоят дороже, но их пусковой момент под нагрузкой значительно выше, чем у типов двигателей с короткозамкнутым ротором. Именно в силу повышенной мощности и большого пускового момента, этот тип двигателей нашел применение в приводах лифтов и подъемных кранов, то есть там, где устройство запускается под нагрузкой, а не вхолостую.

Подробнее про этот тип двигателей читайте здесь: Асинхронные электродвигатели с фазным ротором

Источник

Асинхронные электродвигатели. Принцип работы

Асинхронные электродвигатели – это надёжное, долговечное и недорогое устройство, преобразующее электроэнергию в механическую и позволяющее решить много задач в работе вентиляции, компрессии, подъёмных механизмов и многие другие.

Возможно и бытовое применение электродвигателей с малой мощностью.

В конце XIX века учёным Михаилом Доливо-Добровольским был разработан асинхронный электродвигатель (электродвигатель переменного тока). А уже в 1893 г. была создана впервые в мире промышленная сеть переменного 3-фазного тока на базе элеватора в Новороссийске.
Сегодня невозможно представить не только производство, но и дом, в котором нет этого простого, но эффективного устройства.

Устройство асинхронного электродвигателя

Классическая конструкция двигателя включает в себя:

Читайте также:  Троит двигатель монтеро спорт

Статор – неподвижная (статичная) часть двигателя имеет цилиндрическую форму. Для минимилизации потерь из-за вихревых токов (токи Фуко) сердечник статора делают из тонких стальных пластин, которые изолированы окалиной или скреплены лаком. Сердечник статора имеет пазы, куда крепятся обмотки под углом 120 градусов по отношению друг к другу.

Ротор – подвижная часть, бывает двух видов:

  • Короткозамкнутый представляет собой сердечник, состоящий из алюминиевых стержней накоротко замкнутыми торцевыми кольцами (беличья клетка);
  • Фазный, состоящий из трёхфазной обмотки, соединённой звездой или треугольником, и помещённой в пазы шихтованного сердечника ротора.

Обе части разделены воздушным зазором.

Принцип работы асинхронного электродвигателя

Иногда можно встретить определение асинхронного двигателя как коллекторного либо индукционного. Это объясняется тем, что посредством вращающегося поля статора индуцируется ток в обмотке.

В основу принципа работы асинхронного электродвигателя положено вращение магнитного поля. То есть электродвигатель приводится в движение вследствии взаимодействия магнитных полей ротора и статора.

Синхронной скоростью двигателя называют скорость вращения магнитного поля статора, а скорость вращения ротора асинхронной, потому как она отличается от скорости вращения магнитного поля статора на 2-3%, когда двигатель вращается в холостую, и примерно на 5-8% при нагрузке. Это отставание обусловлено тем, что при совпадении скорости магнитного поля статора и скорости ротора в обмотках ротора перестала бы наводиться ЭДС и вращающий момент не появится. Разность между скоростями поля статора и ротора называют скольжением.

Рассмотрим принцип работы на примере 3х-фазного двигателя с тремя обмотками, установленными под углом 120 градусов, как показано на рисунке справа. Переменный ток проходит по обмоткам статора, создавая магнитное поле в каждой из катушек. Вращающееся магнитное поле статора наводит ЭДС в обмотках ротора. ЭДС в замкнутых проводниках создает ток, который при взаимодействии с магнитным полем приводит к вращению ротора. Скольжение с разгоном двигателя уменьшается, стремясь к 2-3% в холостом режиме.

Однофазные электродвигатели

Асинхронные двигатели переменного тока имеют одну рабочую обмотку. При протекании синусоидального напряжения по обмотке статора создается пульсирующее магнитное поле, изменяющееся по величине, но неподвижное в пространстве.

Основная проблема возникает при пуске двигателя.

В теории возможно запустить его, физически воздействуя на вал и задав вращение в любую сторону. На практике же выделяют 4 способа пуска однофазного двигателя:

    Электродвигатель CSIR с пуском с помощью конденсатора, работа через обмотку.

Наиболее многочисленная группа однофазных электродвигателей, ограничена мощностью 1,1 кВт. Конденсатор последовательно соединён с пусковой обмоткой, он создаёт отставание между пусковой и главной обмотками.
Это способствует сдвигу фаз пусковой и рабочей обмотки, образуя появление вращающегося поля, влияя на возникновение вращающего момента. При достижении рабочей частоты вращения открывается пускатель, и двигатель продолжает работать в обычном режиме.

Электродвигатель CSCR с пуском через конденсатор, работа через конденсатор.

Читайте также:  Подключить двигатель 380 на 220 как подобрать конденсатор

Двигатели CSCR работают с постоянно подключённым конденсатором к пусковой обмотке и подключаемым при включении пусковым конденсатором. Являются лучшим вариантом для работы в сложных условиях. Конденсатор последовательно соединён с пусковой обмоткой, что обеспечивает высокий пусковой момент.
Электродвигатели CSCR – это самые мощные однофазные двигатели, их мощность достигает 11 кВт.
Могут использоваться для работы с низким током нагрузки и при более высоком КПД, что даёт преимущества: в частности, обеспечивает работу двигателя с меньшими скачками температур по сравнению с другими однофазными электродвигателями.

Электродвигатель RSIR с пуском через сопротивление, работа через обмотку.

Этот тип двигателей ещё называют: «электродвигатель с расщеплённой фазой». Имеют ограничение по мощности до 0,25 кВт.
Наиболее дешёвый вариант однофазных электродвигателей.
Пусковое устройство двигателя RSIR имеет две обмотки статора, одна из которых используется только для пуска, диаметр этой обмотки меньше, что увеличивает сопротивление. Это создаёт отставание вращающегося поля, что приводит двигатель в движение.
Электронный пускатель отсоединяет пусковую обмотку при достижении приблизительно 75% от номинального значения. После чего двигатель продолжает работу в обычном режиме.

Примечание: данный тип электродвигателя имеет высокие пусковые токи от 700 до 1000% от номинального значения тока.
Продолжительный пуск может быть губительным для обмотки вследствие перегрева двигателя. Это означает, что их нельзя использовать там, где нужен большой пусковой момент.

Электродвигатель PSC с постоянным разделением ёмкости.

Данный электродвигатель оснащён постоянно включённым конденсатором, последовательно соединённым с пусковой обмоткой. Двигатель PSC не имеет конденсатора, который используется только для пуска. «Пусковая» обмотка становится вспомогательной в момент, когда двигатель достигает рабочей частоты вращения.
Наиболее подходят для областей применения с продолжительным рабочим циклом.
Есть ограничение по мощности – 2,2 кВт.

Трёхфазные двигатели

Трехфазные асинхронные электродвигатели, как правило, используются только на крупных промышленных предприятиях, т.к. для его работы требуется трёхфазное напряжение 380 В AC.

Отличаются по мощности и количеству обмоток. С мощностью всё понятно, чем больше мощность, тем большее усилие создаётся на валу электродвигателя.

Количество обмоток влияет на частоту вращения двигателя, а именно:
при частоте трёхфазного тока f равной 50 Гц или 3000 периодов в минуту, число оборотов N вращающегося поля в минуту будет:

  • при 2 полюсах на статоре: N = (50х60) / 1 = 3000 об/мин,
  • при 4 полюсах на статоре: N = (50х60) / 2 = 1500 об/мин,
  • при 6 полюсах на статоре: N = (50х60) / 3 = 1000 об/мин,
  • при числе пар полюсов статора, равном P: N = (fх60) / P.

Коммутационная колодка трехфазного двигателя имеет 6 зажимов, которые соединяются с началом (U1, V1, W1) и концом (U2, V2, W2) обмотки каждой фазы.

Возможно подключение обмотки трёхфазного электродвигателя в двух режимах: «звезда» и «треугольник».

  • При подключении двигателя «треугольником» фазные концы обмоток подключаются последовательно друг с другом с напряжением 220 В AC.
  • При подключении двигателя «звездой» все выходные концы фазных обмоток соединяются в один узел с напряжением 380 В AC.

При малых напряжениях нагрузки рекомендуется использовать соединение «треугольник», при более высоких – «звезду».

При необходимости получить консультацию по подключению и работе электродвигателя,
а также по приобретению устройств, которые помогут улучшить его работу,
обращайтесь к специалистам Компании «РусАвтоматизация».

Подписывайтесь, чтобы не пропускать новые публикации.

Источник

Adblock
detector