Чем подвесить двигатель автомобиля

Делаем траверсу для вывешивания двигателя в авто

Вот и дошли руки поделится с вами опытом по изготовлению траверсы для вывешивания двигателя своими руками. Согласен, что мало кому придет в голову ради забавы заняться таким делом, но раз уж вы начали это читать, значит такая необходимость у Вас есть.

оговорюсь сразу, что данная траверса подходит не на все типы автомобилей. Для ее установки нужено, чтобы под капотом были выступы, куда ее поставить. Для авто в которых их нет нужна другая траверсы, которая устанавливается на стаканы амортизаторов и телевизор.

  1. 3 профиля по 2 м длиной (я брал 20*40)
  2. шпилька М10
  3. гайки М10
  4. Шайбы (чем здоровее тем лучше)
  5. сварочный аппарат
  6. Болгарка
  7. немного смекалки и прямые руки

Делаем раскройку железа.

И свариваем основную направляющую.

Далее свариваем ноги для траверсы. Если приглядеться, ноги не перпендикулярны, а имеют небольшой наклон, это сделано потому, что капот авто тоже не параллелен земле и нужно скомпенсировать уклон.

Далее все это хозяйство шкурим, ровняем, красим и получается вот такая красота.

Для подвеса двигателя используемся крюк со шпилькой М8. Траверса получилась очень удобной, не смотря на достаточно большой вес.

Источник

Гидроопора двигателя: как устроена, как её диагностировать и можно ли ремонтировать?

Редкий современный мотор не опирается под капотом на гидравлические подушки, дабы минимально беспокоить своими вибрациями водителя и пассажиров. Чем хороши такие опоры, когда они появилась в автопроме, как эволюционируют и… когда исчезнут?

То, что колеблющиеся детали механизма нужно виброизолировать от неподвижных, было ясно еще древним римлянам, который аж в первом веке до нашей эры догадались подвесить «кузов» повозки к шасси с колесами на ремнях из толстой амортизирующей кожи. В автомобилестроении резиновые демпферы для установки двигателя на шасси внедрил Уолтер Крайслер в конце 20-х годов прошлого столетия – изначально для моделей Plymouth. Виброизоляция была хорошим конкурентным преимуществом, поэтому технологии даже придумали маркетинговое название Floating power. В Европе пионером внедрения резиновых демпферов стал Ситроен, который купил права на технологию у Chrysler для внедрения её в конструкцию Traction Avant.

Резиновая подушка крепления двигателя долгие десятилетия оставалась одной из самых консервативных деталей любого автомобиля, а ее эволюции были крайне малозаметны. И в наши дни по дорогам ездит все еще немало машин (УАЗы, Волги, Москвичи), чьи опорные подушки моторов представляют собой простейший монолитный резиновый брусок или диск.

В принципе, для того, чтобы вибрации двигателя не разрушали стальной каркас кузова и не вызывали хронической морской болезни у водителя, этих примитивных резиновых «чурок» вполне достаточно. Однако рост требований к комфорту внутри автомобиля породил некоторое их развитие – инженеры играли с формой демпферов, делали сэндвичи из резины разной упругости, включали в структуру стальные пружины. Это дало свои плоды – опоры стали работать в более широком диапазоне колебаний и нагрузок: на разных по силе и направлению нагрузках в работу включались разные элементы резиновых модулей, обеспечивая, когда надо, повышенную эластичность или, наоборот, повышенную жесткость:

Однако в середине 80-х годов ХХ века европейские автопроизводители начали внедрять в свои модели резино-гидравлические опоры двигателей. Так, одним из первых автомобилей, примеривших гидроопору, был Mercedes-Benz W124. В отличие от чисто резиновых, они демпфировали колебания в более широком диапазоне частот и амплитуд, действуя по принципу амортизатора – гася вибрации за счет сопротивления жидкости, продавливаемой через калиброванные дросселирующие отверстия.

Никакой революции в автопроме резино-гидравлические опоры не вызвали – к периоду их появления инженеры давно научились хорошо просчитывать обычные резиновые подушки под конкретные двигатели с их особенностями распределения колебаний и вибраций, и работали они весьма эффективно. Но конструкции с гидравликой несколько более точно настраивались под характеристики двигателя, чем чисто резиновые. Одну резино-гидравлическую опору на двигатель (реже две) стали ставить, перераспределяя на нее нагрузки так, чтобы улучшить демпфирование и продлить жизнь соседним опорам с обычной структурой, из простой резины.

Устройство и диагностика​

Устройство гидравлической части опоры двигателя несложное. Внутри нее, под основным несущим резиновым упором (как у опоры без гидравлики), имеются две расположенные одна над другой камеры-отсека, заполненные жидкостью. Камеры разделены резиновой демпфирующей стенкой-мембраной, но также они сообщаются между собой через небольшое отверстие – дросселирующий переток. На малых амплитудах вибраций колебаниям сопротивляется мембрана, на больших – вступает в работу канал-переток. В сущности, у такой опоры имеется два «поддиапазона», в которых она проявляет разные демпфирующие характеристики.

Несмотря на то, что жидкость в вышедшей из строя опоре обычно черная от резиновой пыли, гидравлическая часть опоры редко страдает от физического износа – как правило, первым сдается резиновый блок, теряя с возрастом упругость из-за частичных отслоений от металла, микроразрывов и трещин.

Важно понимать, что жидкость и вообще вся гидравлическая часть в резино-гидравлической опоре играет все же не ведущую роль, а вспомогательную. Массу двигателя, как в случае с обычными резиновыми опорами, держит мощный упругий резиновый элемент. И если жидкость по какой-то причине покинет опору (что иногда случается из-за прорыва эластичного дна или из-за утечки по завальцовке частей корпуса), то катастрофы не произойдет – разве что повысится уровень вибраций по кузову. И не факт, что даже во всем диапазоне оборотов – обычно дефект заметнее на холостых.

Однако затягивать с заменой опоры все же не стоит – усилившаяся амплитуда раскачки двигателя заставляет его при запуске или наборе оборотов под нагрузкой биться о неподвижные элементы подкапотного пространства, от чего могут пострадать разные патрубки, шланги, провода. Да и остальные, обычно еще вполне живые, опоры начинают интенсивно изнашиваться после смерти ведущей, гидравлической.

Если взять опору за рабочую часть (ту, к которой прикручивается кронштейн, соединяющий ее с двигателем) и покачать (за опору в чистом виде или за сам двигатель непосредственно), то ее «гидравлическую сущность» вы никак не ощутите – только обычную резиновую упругость. Поэтому визуально неисправности в резино-гидравлической подушке обычно невозможно обнаружить. Ну, за исключением случаев откровенно текущей из нее жидкости… И новая опора, и убитая отвечают определенной упругостью на приложенное вручную усилие – без опыта или хотя бы сравнения с аналогичной машиной с заведомо исправной опорой найти проблему в одиночку сложно для неспециалиста, хотя опытный механик делает это легко.

Читайте также:  Как собрать двигатель девятки

Поэтому для диагностики исправности подушки в гаражных условиях требуется понаблюдать за поведением опоры в условиях, приближенных к рабочим, когда помощник газует под нагрузкой (включение режима «D» или легкое приотпускание сцепления на ручнике). Контролируется амплитуда раскачки двигателя и возможное касание центральным осевым крепежом опоры ее обоймы (корпуса), что недопустимо:

Ремонт резино-гидравлических опор не практикуется. Они неразборные и запчастей к ним в продаже нет. Хотя существует гаражная практика замены опор на похожие (не будем употреблять термин «аналогичные») от других моделей и даже марок машин. У опор переделывают крепления – пересверливают отверстия, изготавливают переходные пластины и т.п.

В принципе, при использовании опор от другой машины с двигателем сопоставимой мощности и массы подобные ухищрения в целом работоспособны и допустимы от безысходности. Разве что крайне нежелательно использовать на продольно расположенных моторах подушки от поперечно расположенных, и наоборот – нагрузки на сдвиг и сдавливание у них рассчитаны совершенно по-разному, и работают такие опоры при нештатной установке некорректно – либо не гасят вибрации, либо быстро разрушаются.

Пик развития и… грядущее исчезновение

При создании некоторых моделей авто высокого класса инженеры пошли еще дальше, добавив к резино-гидравлической опоре систему из двух-трех клапанов, управляемых по команде электроники импульсами тока, вакуумом или подводимым извне давлением масла в зависимости от оборотов и нагрузки на двигатель. В частности, подобная конструкция применяется на Lexus RX с 1998 года.

20 лет спустя внедрили опоры с бесступенчато-изменяемыми характеристиками – с ферромагнитной жидкостью и катушкой, создающей магнитное поле, которое меняет вязкость – тут пионером стал Porsche 911 GT3 2010 года. Оправданность таких радикальных усложнений в далеко не самом функционально важном узле машины – вопрос дискуссионный, но в некоторых случаях навороченные конструкции однозначно обоснованы. Например, в автомобилях, двигатели которых оснащаются системой отключения части цилиндров и скачкообразно меняют свои вибрационно-резонансные характеристики. Активные опоры могут менять свою упругость импульсно, с высокой частотой – синхронно с вибрацией двигателя, но в противофазе к ней – и гасить колебания, как наушники с шумоподавлением гасят внешний шум.

Интересно, что исследования в области разработки подобных активных гидроопор (с ферромагнитной жидкостью и синхронизацией изменения ее свойств с источником вибраций в реальном времени) проводились и в СССР с 80-х годов ХХ века – в частности, в Институте машиноведения им. Благонравова Российской академии наук. Правда, в отечественном автопроме ничего из тех разработок так и не было реализовано – системы активного подавления вибраций применялись в промышленности, в энергетике, в станкостроении.

Впрочем, наиболее сложные и дорогостоящие управляемые опоры автомобильных двигателей, похоже, достигли своего пика развития. И не потому, что идеи для более продвинутых решений исчерпаны, а по причине грядущего вытеснения двигателей внутреннего сгорания электрическими. В эпоху электромобилей сложным управляемым опорам с плавно изменяемыми характеристиками придется уйти в прошлое, поскольку идеально сбалансированный ротор электромотора не порождает такого количества разнонаправленных сил инерции первого и второго порядков и моментов от них, как классические ДВС, в которых движутся поршни, шатуны и коленвал.

Источник

Повышаем управляемость авто. Четыре простых шага к лучшей управляемости.

Тюнинг подвески — целое искусство, темный лес для многих. В то время когда большинство поглощены наращиванием лошадиных сил, управляемсоть традиционно остается на заднем плане. В любом случае те кто мало-мальски вникает в суть любой быстрой, хорошо технически продуманной гражданской машины, знает, что настройка подвески имеет ценность ничуть не меньшую, чем увеличения поголовья коников.
С ростом популярности дрифтинга, Time Attack контестов, и всевозможных Track Days, тюнинг подвески и настройка управляемости становится более важным для тех кто ранее тратил свои кровные в рассчете на улучшение показателей динамики.
Найти спецов, которые смогут увеличить мощность — проще простого. Гораздо сложнее найти гуру что заставят вашу машину хорошо проходить повороты. Решение? Сделайте себя гуру! Если ваши интересы больше, чем просто давить педаль в пол на дамбе у местной водокачки, то самое время приниматься за работу.

В серии этих статей мы раскроем тайны управляемости автомобиля вцелом. В этой статье начнем с четырех фундаментальных первых шагов.

1.Шаг первый. «Липкие» шины.

Шины — самый эффективный способ найти объект нашего вожделения -силу сцепления. Установив комплект шин с улучшенными характеристиками, вы проделаете самый огромный шаг к улучшению поворачиваемости. Другими словами цель — установить максимально широкие и большие шины из тех что вместятся в колесные арки без каких либо доработок. Не менее важно здесь склонить выбор шин в сторону класса UHP (Ultra High Performance)
Список шин данного класса можно растянуть на много километров. Доступны они в любом шинном маркете. Выбор огромен, Разброс цен — естественно тоже.
Для примера:
Michelin Pilot Sport 2
Dunlop Direzza dz101
Bridgestone Potenza re001
и так далее. (список приведен как пример,америкосовский оригинал отличается)
Все эти шины предназначены для уличного использования, дорог общего назначения. Если же вы ставите акцент на всяческие события на гоночных трэках, автокрос, или тупо желаете получить максимально возможное сцепление имеет смысл обзавестить шинами которые допускаются как для соревнований так и для уличного использования. Некоторые из них:
Yokohama A048, A032R
Toyo RA-1, R888
У шин подобного класса есть и минусы. Во первых — цена, во вторых износ у таких покрышек очень высок, и в третьих, количество циклов разогрева состава резины для получения номинального уровня сцепления -ограничено. То есть жизнь их может закончиться вовсе не износом до метки, а разрушением самой химической формулы, позволяющей получить феноменальное сцепление с дорогой. Многие из таких шин просто никакие в дождь и холодную погоду. Если вы видите ее в другом сообществе, значит ленивые администраторы нагло берут материал у нас и даже не читают его. Поэтому покупая такие шины для использования каждый день вы скорее потратите деньги зря. Затраты не оправдают их скоротечный износ, разрушение состава от частых прогревов и охлаждений, как следствие -низкий уровень сцепления.
Большинство грамотных юзеров подобных шин используют их только на гоночных трассах.

Читайте также:  Huter 420jf что это за двигатель

В основном практически в любой автомобиль можно установить шины на два размера больше чем стоковые. К примеру машина с завода оснащенная колесами размерностью 185/70-14″ на диске шириной 5″ обычно без проблем позволяет разместить в арках 205/50-15″ на диске шириной 7″. Установка шин на диск рекомендованной ширины тоже имеет большое значение.

Увеличение посадочного размера шины и уменьшение высоты профиля -вещь хорошая. Низкопрофильные шины имеют боле жесткие боковины, что улучшает отзывчивость на движение руля и позволяет сохранить пятно контакта с покрытием. Как бы то ни было с фанатизмом к снижению высоты профиля относиться нельзя.

Сверхнизкопрофильные шины более чувствительны к изменениям вносимым в подвеску и углам развала. Жесткие боковины и абсолютно плоский протектор не так хорошо прилегают к полотну. Это делает сверхнизкопрофильные шины чувствительными к ударам, толчкам, так как низкой боковине просто некуда сжиматься, поглощая мелочь на дороге. Импульсы при езде по грубым покрытиям вызовут постоянное соскальзывание и подпрыгивания, потерю сцепления. Так же большие размеры колес и шин увеличивают неподрессореные массы.

Например многие энтузиасты, устанавливают на свои компактные хетчи-малолитражки колеса дюймов на 17 с профилем 40. Выглядит несомненно круто, но это «комбо» слишком велико и слишком тяжело для оптимальных характеристик. Хардкорные пилоты, использующие в качестве болидов точно такие же машины предпочитают легковесные 15″ дюймовые колеса с шинами от 195- до 225/50.

Огромные колеса так же увеличивают передаточное отношение. Их большой вес увеличивает эффект маховика, уменьшая показатели разгона и черезмерно нагружает тормоза. Максимальны практичный диаметр дисков -18″, для самых крупных машин. Да вобщем то этот размер ныне самый большой для выпукаемых гоночных шин.

Само собой чтобы добиться нормальной работы подвески нужно максимально снижать неподрессоренные массы, в которые в том числе входят и рычаги подвески, тормоза, половина амортизатора.
Лучший пример больших неподрессоренных масс -это американские Монстр-траки. Даже ввиду того что у них ходы подвесок измеряются уже не в сантиметрах а в дециметрах, неподрессоренные массы не дают водителю возможности точно и адекватно управлять автомобилем.

Неподрессоренные массы монстров вполне сравнимы с подрессоренными, благодаря огромным осям, шинам и элементам подвески. Это крайне негативно сказывается на работе амортизаторов, которым приходиться выполнять кучу работы, дабы погасить кол*цензура*ия. Уменьшите неподрессоренные массы и работа амортизаторов станет гораздо эффективней, колеса всегда будут иметь контакт с полотном.

Свниманием подходите к выбору колесных дисков, чем они легче -тем проще разгоняться и тормозить, они так же способны серьезно снизить неподрессоренные массы.
Легким весом способны похвастаться кованые диски, а так же диски исполненные по технологии MAT(most advanced technology) -у таких колес обод прочнее чем центральная часть, благодаря хитрому центробежному литью. такие производят к примеру Enkei и Kosei.

Остерегайтесь дешевых легкосплавных колес, известны множество случаев поломки или пластилиновой мягкости, при использовании подобных изделий на гоночных трассах. такие не выдерживают элементарных нагрузок, не говоря уже об атаковании поребриков.

2.Шаг второй. Уменьшение продольных и поперечных кренов.

Самая важная из элементарных подвесочных доработок это уменьшение диапазонов крена кузова. Крен во время поворота, клевки при торможении и «козление» при разгоне создают проблемы для водителя.

В опровержение популярного мнения, крен не загружает внешние к повороту колеса. Хуже, он ухудшает управляемость ослабляя реакцию шасси на поворот руля, торможение и разгон -все критически важные действия для контроля автомобиля.

Движения кузова так же вызывают ощущение что машина не управляется достаточно хорошо. Крен, клевки и задирание морды -способствуют отсутствию уверенности за рулем. Гляньте как проходит поворот формула -просто гладит поворот и молниеносно выходит из него, без каких либо кренов. А теперь гляньте на какое нибудь местячковое соревнование в классе сток — машины раскачиваются, скользят, беспрестанно пищат шинами, с дикими кренами.
Вот здесь то и таится все проблема.

Черезмерные движения кузова таят в себе кучу побочных эффетов. Раскачивания и крены передка, задка или кузова целиком перегружают шины, перегрузка моментально перерастает в потерю сцепления. Результат обычно- возвращение домой на эвакуаторе.

Черезмерные ходы подвески могут так же привести к другой проблеме. Большинство стоковых автомобилей имеют компромиссную геометрию подвесок, и некоторые проблемы могут возникнуть в тот момент когда ходы подвесок выходят за рамки разумного. Первое, при черезмерных ходах и кренах подвеска может огорошить вас появлением положительного развала. Это приносит больше всего вреда в подвесках типа McPherson -там угол развала изначально статичен и развал меняется вместе с креном кузова. Не так сильно этот эффект проявляется в подвесках многорычажных -машина кренится а шины меньше подвержены наклону относительно полотна. Такое стечение обстоятельств, как крен и ограниченные возможности геометрии подвески, заставляет шины вставать на внешний край,вследствие чего уменьшается пятно контакта и теряется сцепление.

Еще один злющий эффет -это так называемый «bump steer», когда связанные элементы подвески находятся под разными «гуляющими» углами по отношению друг к другу во время их движения (динамическое изменение углов). Как результат, руль может оставаться неподвижным, но колеса будут петь свою песню благодарая раскачке. Водитель же чувствует подобные перемещения как нестабильность шасси вобщем. Представьте смесь кренов, клевков и козления — все эти процессы добавляют масла в огонь.

Теперь когда нам известно что движения кузова -это не есть хорошо, Будем разбирать как уменьшить паразитный эффект. Первое что потребуется сделать -увеличить жесткость пружин. Более жесткие пружины будут эффективно сопротивляться продольным и поперечным раскачкам, задираниям и комбинациям этих сил.

Читайте также:  Как запустить асинхронный двигатель от однофазной сети

Конечно у более жестких пружин и большее усилие на распрямление после сжатия. Чтобы после установки жестких пружин машина не прыгала как козлик, нужны амортизаторы с увеличенными силами сопротивления. Амортизаторы никак не влияют на углы кренов, но влияют на то как подвеска будет реагировать на качество покрытия, и руление. Амортизаторы с увеличеным усилием отбоя предотвратят припрыгивания, «полеты» над волнами и неровностями. Большее усилие аммортизатора так же улучшает отклики автомобиля на руление. Слишком большое усилие отбоя может не давать подвеске принимать исходное положение, подвеска будет не успевать распускаться и станет прижиматься все сильнее и сильнее, что лишит ее хода вообще.

Другой способ уменьшить крен кузова в повороте -это установка увеличенных стабилизаторов поперечной устойчивости -торсионов, образно соединяющих левое и праве колесо. Они никак не действуют, до того момента, когда вы начинаете поворачивать. Как только появляется крен -стабилизатор начинает скручиваться, сопротивлясь крену. Стабилизаторы влияют на управляемость не так как пружины, они не участвуют в работе когда машина клюет носом или задирает его. Обычно демпфирование сил стабилизатора не требуется, поэтому при увеличении диаметра стабилизатора изменять характеристики амортизаторов тоже не нужно.

Ужесточение подвески несомненно ухудшит плавность хода, и довольно просто увлечься и сделать машину слишком жесткой. Часто так случается и подвеска вместо того чтобы обрабатывать выступы, кочки, и сохранять максимальное сцепление начинает просто «прыгать» в поворотах.

3.Шаг третий. Баланс шасси.

Теперь когда вы уменьшили крены и улучшили отзывчивость управления, можем заняться более продвинутыми вещами. Цель для большинства из нас -получить нейтральную поворачиваемость. Нейтральный баланс -когда все четыре колеса скользят в равной степени на протяжении всего поворота -самый быстрый способ прохождения в большинстве случав. В нейтрали вы используете максимальное сцепление с дорогой. Может показаться выдумкой, но большинство дрифтеров используют настройки нейтральной поворачиваемости, для того чтобы шире использовать разнообразные методы контроля над машиной в заносе.

К сожалению для энтузиастов, большинсво авто сходящих с конвеера имеют склонность к недостаточной поворачиваемости (understeer), когда на пределе передние шины начинают проскальзывать первыми. Производители намеренно производят такие машины так как недостаточная управляемость -проще и безопаснее для начинающих и среднестатистических водителей.
Недостаточная поворачиваемость неэффективна для достижения максимального бокового ускорения, потому как передние шины не могут использоваться эффективно -скользят, а потенциал задних не реализуется на все 100.
Еще недостаточная -самый медленный и скучный способ пройти поворот. Вывод? Uundersteer sucks. (дословно из оригинала текста:))

Если мы в борьбе с недостаточной управляемостью зайдем слишком далеко, мы незамедлительно спровоцируем избыточную (oversteer). Избыточная поворачиваемость появляется когда на пределе задние шины начинают скользить быстрее чем передние.

Дрифтеры тренируются и работают над техникой управления в условиях избыточной поворачиваемости, превращая это в искусство. Избыточная поворачиваемость может сделать из вас народного героя или посмешище. Контролируйте избыточную хорошо -и вас все полюбят. Делайте то же самое плохо — и те же люди будут смеяться когда вы будете возвращаться домой на эвакуаторе.

Как же нам настроить баланс автомобиля? Ответ есть -манипулированием углов увода! Что это? Угол увода -это разница между тем вектором куда шина направлена и тем куда она на самом деле двигается , то есть если посмотреть сверху на колесо во время поворота, то диск будет направлен в одну сторону, а покрышка будет как бы немного «не догонять» (не путайте увод с подламыванием). Когда этот угол слишком велик -шина начинает скользить.

Главная сила определяющая величину угла увода -это уровень загрузки каждого из колес во время поворота. Чем больше загружено колесо -тем больше работы на него приходится и больше будут углы увода. Переднеприводники с тяжелой передней частью сильно давят на передние шины, что вызывает больший угол увода чем в задних. Передние шины в какой то момент первыми перескакивают планку максимального угла увода и начинают скользить -как следствие вызывают недостаточную поворачиваемость. Заднемоторные машины (а-ля porsche 911) имеют большее распределение веса назад, поэтому первыми максимального угла увода достигают задние шины, такие машины имеют тенденцию к избыточной поворачиваемости. Среднемоторные же авто практически поровну разделяют загрузку между передней и задней осью. Это проявляется в виде нейтрального поведения на дороге.

Правильно играя загрузкой шин и углами увода, контролируя перераспределение веса достигается баланс шасси. Перераспределением веса и загрузкой шин в повороте многие естественные тенденции в управляемости вашего авто можно кардинально изменить. Возможно ли привить тяжелоносому переднеприводнику избыточную поворачиваемость? Да легко! Поглядите на самые удачные образцы переднеприводных гоночных машин — у них просто сумасшедший oversteer!

Как настройщику манипулировать величинами о которых мы говорим? Изменяя усилие пружин, стабилизаторов, размер и давление в шинах, и немного в меньшей степени тут решает усилие амортизаторов. Первое что должен испробовать тюнер -увеличить давление в шинах. Чем больше шина накачана, (небеспричинно естественно, фанатизму здесь тоже не место) тем меньший угол увода она может производить. Например если вы переднеприводнику немного увеличите давление на передней оси,а на задней наоборот -уменьшите, то это даст результат ввиде меньшего угла увода на передних шинах и большего -на задних. Только лишь эта простейшая манипуляция позволит уменьшить недостаточную поворачиваемость.

Изменение усилия пружин (springrate) и стабилизаторов имеет огромное влияние на увод шин. Используя более жесткие пружины или стабилизаторы на одной из осей спровоцирует большее перераспределение веса на внешнее колесо этой оси в повороте. Более мягкая ось будет сжиматься, а значит более жесткие пружины всей системы будут сопротивляться сжатию, передавая больший вес на шину заставляя ее работать при большем угле увода.

Самый эффективный способ избавиться от недостаточной поворачиваемости на переднеприводнике например, это установить более жесткий задний стабилизатор поперечной устойчивости. Так же наоборот, чтобы приручить врожденную избыточную, можно сделать переднюю подвеску жестче, и увеличить давление в задних шинах.

Источник

Adblock
detector