Блоки управления шаговыми двигателями схема

Как управлять шаговым двигателем через Arduino: схема подключения

Шаговый двигатель — один из основных компонентов роботехники, ЧПУ-станко, 3D-принетеров и других автоматических систем. В этой статье рассмотрим что это такое, как его подключить и как управлять шаговым двигателем с помощью Arduino.

На производстве и в быту при автоматической работе каких-либо механизмов часто требуется точное позиционирование рабочего органа или оснастки. Для этого могут использоваться серво приводы и шаговые двигатели. Эти два вида электропривода значительно отличаются, как по конструкции, так и по особенности работы и управления. В этой статье мы затронем тему работы с шаговыми двигателями с помощью Arduino и модуля для управления электродвигателями на базе ИМС ULN2003.

Что такое шаговый двигатель?

Прежде чем перейти к статье, давайте сразу договоримся, что статья не направлена на специалистов, а её цель – донести любознательным любителям техники и технологий о таком устройстве, как шаговый двигатель и об основах работы с ними. Поэтому умников и критиков, жаждущих поговорить о великом многообразии управляемого и регулируемого электропривода, прошу идти общаться на тематические ресурсы по ЧПУ-станкам и 3D-принтерам.

Итак, для начала сформулируем определение. Согласно Википедии: « Шаговый электродвигатель — синхронный бесщёточный электродвигатель с несколькими обмотками, в котором ток, подаваемый в одну из обмоток статора, вызывает фиксацию ротора. Последовательная активация обмоток двигателя вызывает дискретные угловые перемещения (шаги) ротора».

Формулировка достаточно понятна, но её последнее предложение может вызвать некоторое недопонимание. Поэтому я предлагаю провести небольшое сравнение.

Всем известно что ротор «обычного» электродвигателя, будь то асинхронного, синхронного, коллекторного или любого другого будет вращаться до тех пор, пока на него подают напряжение питания, и после отключения питания он будет вращаться еще какое-то время по инерции, если же не используются какие-либо средства для его торможения.

Ротор такого двигателя вращается просто вокруг своей оси без каких-либо ограничений, на 360 градусов, и остановится он в любом месте. Зафиксировать его положением можно только механически (тормозом). По этой причине не получится добиться точного позиционирования исполнительных механизмов, что требуется в робототехнике, ЧПУ-станках и другом автоматизированном оборудовании.

Но шаговые двигатели разработаны для применения в механизмах, где детали поворачиваются точно на требуемый угол.

В приведенном выше определении было сказано «… вызывает дискретные угловые перемещения (шаги) ротора …» — это значит, что ротор шагового двигателя не вращается в обычном понимании, а поворачивается на какой-то определенный, «дискретный» угол. Этот угол называется шагом, отсюда и название «шаговый двигатель». Мне нравится еще одно название этих устройств — «двигатель с конечным числом положений ротора».

Питание такого двигателя невозможно без системы управления, или как его еще называют, драйвера — он подаёт импульсы в нужные обмотки, чтобы повернуть ротор на нужный угол. Это наглядно иллюстрирует приведенная ниже анимация.

Кроме того, что можно поворачивать двигатель на определенный угол и фиксировать его в этом положении, делать это всё можно без схемы обратной связи (датчиков положения и прочего).

Рассматривать типы шаговых двигателей в пределах этой статьи мы не будем, лишь кратко перечислим, какими они бывают. По конструкции:

2. С постоянными магнитами.

По способу питания:

  1. Униполярные (однополярные — ток пропускают через обмотки только в одну сторону).
  2. Биполярные (ток пропускают через обмотки в обе стороны). Здесь драйвер должен подавать напряжение различной полярности, что несколько усложняет схемотехнику. При тех же размерах развивают бОльшую мощность по сравнению с униполярными.

В униполярном двигателе зачастую 5 проводов — 1 общий, от середины каждой из двух обмоток, и 4 от концов обмоток. Иногда говорят «4 обмотки» — это также правильно, поскольку фактически мы получаем 4 обмотки соединенных в общей точки.

Также ШД могут отличаться и по количеству проводов, это зависит от того, как соединены обмотки и какое питание предполагается, некоторые варианты вы видите в таблице ниже.

Управление шаговым двигателем

Различают два способа управления шаговым двигателем:

1. Полношаговое .
Одновременно включается только пара обмоток (без перекрытия с другими). Достигается максимальный момент на валу, но точность установления угла меньше, чем в других способах.

2. Полушаговое .
В этом случае увеличивается количество шагов, соответственно повышается точность установки положения вала. На каждый первый шаг включается одна обмотка, на каждый второй шагами (полушаг) – пара обмоток. Но когда включена одна обмотка момент на валу снижается вдвое.

Читайте также:  Как определить мощность электрического двигателя

На анимациях ниже наглядно продемонстрировано

В некоторых источниках отдельно обозначают микрошаговое управление. Используется, когда необходимо максимальное количество шагов и точность управления. По способу управления оно похоже на полушаговый режим, между шагами включаются две обмотки, а отличие в том, что токи в них распределяются не равномерно. Главный недостаток такого подхода — усложняется коммутация (система управления).

Перейдем к практике

Теория всегда запутана и непонятна, чтобы разобраться, что и как, нужно брать и делать. Поэтому перейдем к практической стороне вопроса.

Итак, из рассмотренного ранее набора у меня есть:

  • Arduino UNO;
  • Модуль ULN2003;
  • Шаговый двигатель 28BYJ-48 5V DC;
  • Куча перемычек, бредборд и источник питания для него.

Модуль ULN2003 – предназначен для управления униполярным шаговым двигателем. Схематически это транзисторная сборка Дарлингтона с 7-ю каналами и, в принципе, ею можно управлять чем угодно. Технические характеристики приведены ниже:

  • Номинальный ток коллектора одного ключа — 0,5А;
  • Максимальное напряжение на выходе до 50 В;
  • Защитные диоды на выходах;
  • Вход адаптирован к разным видам логики;
  • Возможность применения для управления реле.

В модуле, кроме самой микросхемы ULN2003, есть светодиоды для индикации напряжения на выходе, колодка для подключения и перемычка для отключения питания.

Двигатель 28BYJ-48 5V DC подключается штатным разъёмом к белой колодке на плате. У него 5 проводов — красный общий, и 4 от обмоток.

  • 32 шага за один оборот ротора;
  • Встроенный редуктор с передаточным отношением 63.68395:1, благодаря этому вал делает 1 оборот за 2048 шагов, при полношаговом режиме и 4096 при полушаговом;
  • Cкорость вращения: номинальная 15 об/мин, максимальная 25 об/мин;
  • Напряжение питания 5 В;
  • Ток одной обмотки 160 мА;
  • Полный ток: в 4-шаговом режиме 320 мА, при быстром вращении 200 мА.
  • Коэффициент редукции: 1/63,68395
  • Угол шага ротора (без учета редуктора): при 4-ступенчатой последовательности сигналов управления 11,25 ° (32 шага на оборот); при 8-ступенчатой — 5,625 ° (64 шага на оборот)
  • Крутящий момент не менее: 34,3 мНм (120 Гц);
  • Тормозящий момент: 600–1200 гсм;
  • Тяга: 300 гсм;
  • Вес:33 г.

Итак, рассмотрим простейшие примеры управления двигателем без использования библиотек. Как нам известно на обмотки нужно подавать импульсы определенной последовательности.

Значит, попробуем выдать такие сигналы с ардуино. Для этого я подключаю модуль ULN2003 по такой схеме (пин ардуино – контакт модуля)

Дальше напишем в Arudino IDE код, который будет подавать на выходы сигналы в соответствии с таблицей выше.

// назначим переменные с номерами портов

const int dl = 2; // переменная для задержки

// назначим указанные пины как выходы

//сформируем сигналы для первого шага

delay(dl); //Задержка между шагами, чем она меньше — тем быстрее вращение вала.

//сформируем сигналы для второго шага

//сформируем сигналы для третьего шага

//сформируем сигналы для четвертого шага

Двигатель начнет вращаться, скорость вращения задаётся переменной dl. Я её ввёл только для того, чтобы в каждом шаге не вводить задержку вручную. Ниже я приложу видео и в нём для наглядности я показал как вращение с задержкой между шагами равной 2 мс (на 1 мс двигатель просто пищит и не вращается…), и с задержкой в полсекунды, что позволяет наглядно увидеть, в какой последовательности подаются сигналы на обмотки, что позволяет убедиться в том, что напряжение подаётся на две обмотки сразу, согласно таблице выше. При задержке в 2 мс светодиоды светятся как будто все вместе.

Перейдем к полушаговому управлению. В таблице ниже приведен порядок подачи сигналов на обмотки рассматриваемого двигателя для его реализации.

Тогда код будет таким:

// назначим переменные с номерами портов

const int dl = 2; // переменная для задержки

// назначим указанные пины как выходы

//сформируем сигналы для первого шага

delay(dl); //Задержка между шагами, чем она меньше — тем быстрее вращение вала.

//сформируем сигналы для второго шага

//сформируем сигналы для третьего шага

//сформируем сигналы для четвертого шага

//сформируем сигналы для пятого шага

//сформируем сигналы для шестого шага

//сформируем сигналы для седьмого шага

//сформируем сигналы для восьмого шага

Но на практике такой подход к управлению шаговым двигателем не используется. Для этого есть готовые библиотеки, в Arduino IDE есть встроенная «Stepper». Возьмем из библиотеки готовый пример «Stepper_oneRevolution» и изменим его под наш двигатель, код привожу ниже и в комментариях опишу основные особенности:

Читайте также:  Асинхронный двигатель как потребитель реактивной мощности

const int stepsPerRevolution = 2048; // изменить в соответствии с количеством

//шагов вашего двигателя. Вообще здесь задаём количество шагов, на которые повернется двигатель

// мы указали для 1 полного оборота

// назначаем пины, к которым подключен драйвер ШД

Stepper myStepper(stepsPerRevolution, 13, 12, 11, 10);

// указываем номинальную скорость 15 об.мин:

// включаем последовательный пор:

// делаем оборот по часовой стрелке:

Serial.println(«clockwise»); // сообщение в монитор порта

// делаем оборот против часовой стрелке:

Serial.println(«counterclockwise»); // сообщение в монитор порта

Первое что бросается в глаза – код занимает значительно меньше времени, количество шагов для полного оборота ротора задаётся первым аргументом функции Stepper, с её помощью объявляются пины, к которым подключен двигатель и количество шагов в полном обороте вала её синтаксис такой:

Stepper название (количество шагов в полном обороте, пин 1, пин 2, пин 3, пин 4).

Ну а когда нам нужно вращать сам двигатель мы обращаемся к двигателю название которого мы написали в Stepper с приставкой «.step», у нас это myStepper.step. В видео ролике я для наглядности вставил фрагмент, где по часовой стрелке двигатель делает пол оборота, а против – целый оборот. Он в самом конце. Код я для этого изменил следующим образом:

// делаем оборот по часовой стрелке:

Serial.println(«clockwise»); // сообщение в монитор порта

// делаем оборот против часовой стрелке:

Serial.println(«counterclockwise»); // сообщение в монитор порта

В мониторе порта микроконтроллер нам «говорит» в какую сторону вращается двигатель.

Ну и, наконец, предлагаю посмотреть видео, в котором демонстрируются работа всех примеров кода из этой статьи

Источник

Блоки управления шаговыми двигателями схема

Пропорциональное управление шаговым двигателем

Автор: МКС, uels73@mail.ru
Опубликовано 14.08.2013
Создано при помощи КотоРед.

Описываемое ниже устройство позволяет управлять униполярным шаговым двигателем типа СДХ 1,8/40 и аналогичным. Схема электрическая принципиальная блока управления изображена на рис.1. Он выполнен на базе микроконтроллера ATmega 8 работающего от встроенного тактового генератора на частоте 2 МГц. В качестве ключей, коммутирующих обмотки шагового двигателя М1, использованы логические элементы микросхем DD2, DD3 типа SN75452 (русский аналог — К155ЛА18). Это микросхемы – повышенной мощности с открытым коллекторным выходом.

Блок поддерживает пропорциональное и дискретное управление мотором. В режиме пропорционального управления — угол поворота ротора двигателя, задается переменный резистором R1. В режиме дискретного управления — вращение двигателя «влево», «вправо», «стоп» осуществляется кнопками S1 и S2. Кроме этого, в схеме можно выбирать шаговый или полушаговый режим работы, а также скорость вращения двигателя.
Установкой перемычки X4 выбирается пропорциональное управление, а при ее отсутствии – дискретное управление. Перемычкой X5 определяется шаговый и полушаговый режим работы двигателя. Все эти режимы работы инициализируются только в момент включения схемы или сброса микроконтроллера. Поэтому нужные перемычки необходимо установить перед включением питания. В микроконтроллере задействованы два канала АЦП. На вход одного из них – ADC5 (28 ножка) подключен подстроечный резистор R3. С его помощью регулируется скорость вращения двигателя при любом режиме работы схемы.
В режиме пропорционального управления задействуется еще один канал АЦП – ADC4 (27 ножка). На его вход через интегрирующую цепь R2, C1 подключен переменный резистор R1, который задает угол поворота ротора мотора. Скорость работы АЦП в данной управляющей программе осуществляет преобразования с 8 — битной точностью. Поэтому положение ручки переменного резистора R1 программа контроллера условно разбивает на 255 шагов. После включения питания, программа выполняет калибровку положения ротора шагового двигателя. Для этого, перед началом работы, автоматически выполняется команда «вращение двигателя влево» до тех пор, пока флажок, закрепленный на роторе мотора, не «доедет» до концевого датчика (оптопары) VT1, HL1. При поступлении сигнала с датчика VT1, программа обнуляет регистр-счетчик количества шагов двигателя, измеряет напряжение на выходе переменного резистора R1, преобразует его в цифровой код в диапазоне от 0 до 255, записывает его в старший байт регистра результата преобразования АЦП (это количество шагов переменного резистора R1), а затем сравнивает его содержимым регистра-счетчика количества шагов двигателя. Если число шагов резистора R1 больше чем шагов двигателя М1, то выдается команда: «вращение двигателя вправо». При этом с каждым шагом ротора происходит инкремент счетчика шагов двигателя и его сравнение с числом в регистре АЦП (шаги резистора R1). Когда число шагов двигателя станет равно числу в регистре АЦП, выполняется команда: «стоп». Поворачивая ручку резистора R1 «влево», уменьшается уровень постоянного напряжения на входе АЦП. При этом число в регистре результата преобразования АЦП станет меньше чем текущее значение регистра — счетчика шагов. В этом случае выдается команда: «вращение двигателя влево». С каждым шагом двигателя происходит декремент регистра-счетчика шагов двигателя до тех пор, пока числа в обоих регистрах не станут равны. Таким образом, вращая ручку переменного резистора R1, ротор двигателя поворачивается в том же направлении и на такое же количество шагов.
Отмечу, что предлагаемый двигатель совершает один оборот на 360° за 200 шагов (т.е. один шаг – 1,8 град.). Следовательно, в данной схеме, за 255 условных шагов от переменного резистора R1, ротор мотора сделает более одного оборота и повернется на угол 459°. Поэтому для ограничения угла поворота двигателя используется концевой датчик (оптопара) для крайнего правого положения ротора. Он выполнен на элементах VT2, HL2. Для более точного копирования угла поворота ручки переменного резистора ротором двигателя необходимо установить в разрыв вывода сопротивления R1, подключенного к «+5 В», ограничительный резистор Rогр.. Его номинал следует тщательно подобрать (в пределах от 1 до 3 кОм).
В управляющей программе предусмотрена функция повторной калибровки положения ротора двигателя в процессе работы устройства. Например, в случае проскальзывания шагов ротора, по какой либо причине (двигатель перегружен, зацепился за что-то и т.д.), можно повернуть ручку переменного резистора R1 в крайнее левое положение и подождать 2 — 3 секунды. При этом происходит проверка положения флажка ротора с помощью оптического датчика крайнего левого положения VT1. Если флажок не зашел в зону срабатывания датчика, значит в процессе работы произошло смещение шагов ротора мотора М1 относительно шагов резистора R1. В этом случае запускается программа повторной калибровки системы, и работа устройства восстанавливается.
Для работы схемы в режиме пропорционального управления оптический датчик крайнего левого положения и калибровки VT1 — обязателен. Датчик крайнего правого положения VT2 можно не ставить, если нет необходимости в ограничении положения ротора при вращении вправо. Но, тогда, необходимо 14 вывод микроконтроллера подключить к +5 В.
При пропорциональном управлении двигателем в полушаговом режиме ротор совершает поворот в пределах от 0° до 230°. Мощность мотора уменьшается, зато увеличивается плавность хода. Это необходимо учитывать при выборе этого режима работы.
В режиме дискретного управления вращение «вправо» осуществляется кнопкой S1, вращение «влево» — кнопкой S2. Если кнопки не нажаты, выполняется команда «стоп». Программа калибровки двигателя и переменный резистор R1 в этом режиме не используются. Оптические датчики VT1, HL1 и VT2, HL2 работают как ограничители крайних положений ротора двигателя М1. Если ограничение вращения не требуется, то эти оптопары можно не ставить. Но при этом необходимо выводы 14, 15 микроконтроллера припаять к +5В.
В случае необходимости контроля над работой шагового двигателя другими (внешними) устройствами, в схеме предусмотрены специальные выходы на старших пинах порта D микроконтроллера. На выводе PD7 «step» формируется кратковременный импульс прямоугольной формы при каждом шаге двигателя (может пригодиться для внешнего счетчика шагов). Вывод PD6 «rewers» – сигнал реверса двигателя (лог. 0 — вращение вправо, лог. 1 – вращение влево). При обнулении (сбросе) программного счетчика — регистра количества шагов, на выводе PD5 формируется кратковременный импульс «reset». Эти выходы работают и в режиме пропорционального управления.
Управляющая программа для микроконтроллера написана на языке Ассемблер. Файл прошивки прилагается. Кроме этого, необходимо запрограммировать фьюзы: CKSEL0=0, CKSEL1=1, CKSEL2=0, CKSEL3=0, SUT0=0, SUT1=1, SKOPT=1.

Читайте также:  При прогреве двигателя плавают обороты пассат б3


Печатная плата блока управления изображена на рис. 2. Она изготовлена из одностороннего фольгированного стеклотекстолита размерами 42 × 58 мм. В прикрепленном файле с расширением .lay прилагается рисунок для «лазерно-утюжной» технологии изготовления платы. Расположение элементов схемы на печатной плате приведено на рисунке 3.

После установки микросхемы – стабилизатора DA1, к ней, необходимо прикрутить радиатор площадью не менее 4 см². Собранная конструкция представлена на фото. 1 и фото. 2.


Как уже отмечалось, логические микросхемы SN75452 можно заменить русским аналогом — К155ЛА18. Раньше они использовались в старых пятидюймовых флоппи дисководах вместе с предлагаемым шаговым двигателем.


Предлагаемый блок может быть использован в различных устройствах с электромеханическим приводом. Например, у меня два таких модуля с шаговыми двигателями пропорционально управляют видеокамерой наблюдения с удаленным доступом по двум осям координат. Один мотор поворачивает камеру по оси Х, другой – по оси Y (фото. 3).

Видеоролик о работе девайса:

Источник

Adblock
detector