Автоматическое регулирование оборотов двигателя

Содержание
  1. Простейший регулятор оборотов электродвигателя своими руками
  2. Характеристики самодельного контроллера
  3. Схема регулятора оборотов для электродвигателя
  4. Мощность и нагрузка регулятора оборотов
  5. Изменение оборотов асинхронного двигателя. Разбор способов регулирования.
  6. Регулирование частотой
  7. Регулирование оборотов изменением числа пар полюсов
  8. Асинхронные двигатели с фазным ротором
  9. Регулирование с помощью напряжения
  10. Установка активного сопротивления в цепи ротора
  11. Моторы с двойным питанием через вентильные устройства
  12. Эпилог
  13. Автоматические регуляторы частоты вращения двигателя
  14. Всережимные регуляторы
  15. Работа регулятора при пуске дизеля
  16. Работа регулятора на минимальной частоте вращения холостого хода
  17. Работа регулятора на нагрузочных режимах
  18. Корректоры топливоподачи
  19. Работа отрицательного корректора

Простейший регулятор оборотов электродвигателя своими руками

Изготавливая различные самоделки, приходится сталкиваться с рядом проблем и поиском их решений. Так и в случае с различными приспособлениями, которые имеют в своей конструкции коллекторный электродвигатель.

Очень часто нужно сделать так, чтобы двигатель имел регулируемые обороты. Для этих целей используется регулятор (контроллер) оборотов двигателя, который можно собрать своими руками.

Представленный ниже регулятор для электродвигателей позволяет не только обеспечить плавный пуск мотора и степень регулировки оборотов, но и защитить двигатель от перегрузок. Работать контроллер может не только от 220 Вольт, но и от пониженного напряжения, вплоть от 110 Вольт.

Характеристики самодельного контроллера

  • Диапазон напряжений (110-240 Вольт);
  • Возможность регулировки оборотов электродвигателя, от 9-99%;
  • Нагрузка, до 2,5 кВт;
  • Рабочая мощность, не более 300 Вт.

Самодельный регулятор оборотов для электродвигателя имеет низкий уровень шума, он позволяет осуществлять плавную стабилизацию оборотов и осуществлять мягкий пуск электродвигателя.

Ниже будет представлена схема регулятора оборотов для электродвигателя и принцип его работы.

Схема регулятора оборотов для электродвигателя

Чтобы собрать регулятор оборотов для двигателя потребуется генератор ШИМ импульсов и симистор для управления двигателем. Диод и резистор D1 и R1, позволяют снижать напряжение для питания двигателя, а конденсатор C1, призван обеспечивать фильтрацию тока на входе электроцепи.

Элементы P1, R5 и R3 — это делители напряжения с возможностью регулировки его значений. Резистор R2, который указан на схеме регулятора оборотов электродвигателя, позволяет синхронизировать внутренние блоки регулятора с основным симистором (ВТ139), на котором собственно и работает регулятор оборотов.

Ниже на рисунке можно увидеть наглядное расположение всех элементов регулятора оборотов для электродвигателей. Обязательно следует безопасно расположить элементы, так как работа регулятора осуществляется от опасного напряжения в 220 Вольт.

Мощность и нагрузка регулятора оборотов

К самодельному регулятору оборотов двигателя, сделанному по выше представленной схеме, можно подключить нагрузку не более 2 кВт. В случае увеличения нагрузки осуществляется замена главного симистора BT138/800. Если симистор устанавливается большего номинала, то его рекомендуется вынести за пределы общей платы, и обязательно установить на радиатор охлаждения, который можно сделать из куска алюминиевой полосы.

Примечательно то, что подобный регулятор можно использовать не только с электродвигателями, но и с лампами освещения. Таким образом, дёшево и сердито, можно собрать регулятор для яркости ламп освещения.

Подписывайтесь на мой канал в Дзен. Всем удачи, и мирного неба над головой!

Источник

Изменение оборотов асинхронного двигателя. Разбор способов регулирования.

Благодаря своей простоте исполнения, относительной дешевизне и надежности трехфазные двигатели широко используются в хозяйстве и производстве. Во многих исполнительных механизмах применяют всевозможные типы асинхронных двигателей . Для широкого спектра применения АД, необходимо изменять и регулировать скорость вращения вала двигателя. Регулировка скорости АД производят несколькими способами. Их мы сейчас и рассмотрим.

  1. Механические регулирование. Путем изменения передаточного числа в редукторах.
  2. Электрическое регулирование. Изменением нескольких параметров питающего напряжения.

Рассмотрим электрическое изменение скорости АД, как более точный и распространённый способ регулирования.

Управление электрическими параметрами позволяет производить плавный запуск двигателя, поддерживать заданные параметры скорости или момента асинхронного мотора.

Параметры с помощью которых управляют мотором:

  • Частотой тока питающей сети.
  • Величиной тока в цепях мотора.
  • Напряжением на двигателе.

Самым распространённым асинхронным двигателем является мотор беличье колесо, двигатель с короткозамкнутым ротором. Для управления вращением, в этом типе электрических машин, применяют несколько видов воздействия.

  • Изменение частоты поля статора.
  • Управление величиной скольжения, изменяя напряжение питания.

Регулирование частотой

Специальные устройства, преобразователи частоты (другие названия инвертор, частотник, драйвер), подключаются к электрической машине. Путем выпрямления напряжения питания, преобразователь частоты внутри себя формирует необходимые величины частоты и напряжения, и подает их на электрический двигатель.

Необходимые параметры для управления АД преобразователь рассчитывает самостоятельно, согласно внутренним алгоритмам, запрограммированным производителем устройства.

Преимущества регулирование частотой .

  • Достигается плавное регулирование частоты вращения электромотора.
  • Изменение скорости и направление вращения двигателя.
  • Автоматическое поддержание требуемых параметров.
  • Экономичность системы управления.

Единственный недостаток, с которым можно смирится, это необходимость в приобретении частотника. Цены на такие устройства совсем незаоблачные, и в пределах 150 уе, можно обзавестись преобразователем для 2 кВт двигателя.

Регулирование оборотов изменением числа пар полюсов

Специальные многоскоростные двигатели со сложной обмоткой регулируются путем изменения количества активных полюсов на статоре. Обмотки полюсов разбиты на группы, и чередуются, путем коммутации обмотки подключаются, то параллельно, то последовательно.

Положительные моменты данного способа.

  • Высокий КПД мотора.
  • Жесткие механические выходные параметры.

К недостаткам такого управления, можно отнести высокую стоимость электрической машин, а также значительный вес и габариты такого двигателя. Изменение оборотов происходит ступенькой 1500-3000 об/мин.

Асинхронные двигатели с фазным ротором

Основной способ управления АД с фазным ротором — изменение величины скольжения между статором и ротором.

Регулирование с помощью напряжения

Через специальные автотрансформаторы ЛАТР, путем изменения напряжения на обмотках двигателя, производят регулировку оборотов вала.

Данный способ так же подходит и к АД с короткозамкнутым ротором. Таким способ можно регулировать в пределах от минимума до номинальных параметров двигателя.

Читайте также:  Запуск двигателя с кнопки бмв

Установка активного сопротивления в цепи ротора

Переменное реостатное сопротивление или набор сопротивлений в цепи ротора воздействует на ток и поле ротора. Изменяя таким образом величину скольжения и количество оборотов двигателя.

Чем больше сопротивление, тем меньше ток, тем больше величина скольжения АД и меньше скорость.

Достоинства такого регулирования.

  1. Большой диапазон регулирования оборотами электрической машины.
  2. Мягкая выходная характеристика мотора.

Недостатки такого способа.

  1. Уменьшение КПД двигателя.
  2. Ухудшение рабочих характеристик механизма.

Моторы с двойным питанием через вентильные устройства

Регулировка мощности и оборотов в АД с фазным ротором происходит путем изменения величины скольжения. Управление крупными, специальными машинами происходит путем подачи и регулировкой величины ЭДС, на ротор от отдельного источника напряжения.

Эпилог

При всех своих достоинствах асинхронные машины имеют существенный недостаток, это рывок ротора при подаче напряжения. Такие режимы опасны как для самого двигателя, так и для приводных механизмов. Поскольку во время пуска АД, ток в обмотках двигателя приравнивается к короткому замыканию. А рывок вала разбивает подшипники, шлицы, передаточные устройства. Поэтому пуск АД стараются производить плавным стартом. А именно:

  • Запуск через ЛАТР.
  • Разгон и работа АД, через переключение обмоток двигателя звезда-треугольник.
  • Использование устройств управления, таких как частотный преобразователь.

Источник

Автоматические регуляторы частоты вращения двигателя

Автоматический регулятор частоты вращения включает в себя собственно механический регулятор с центробежными грузами и систему управляющих рычагов, обеспечивающих связь регулятора и элементов настройки с дозирующей муфтой.

Автоматический регулятор частоты вращения служит для поддержания заданного скоростного режима с заданной точностью. Точность регулирования оценивается, в частности, степенью неравномерности, которая определяется как отношение разности частот вращения режима холостого хода и заданного режима по внешней скоростной характеристике к среднему их значению. Практически степень неравномерности определяется наклоном регуляторной характеристики.

Режим холостого хода означает работу двигателя без нагрузки. Таким образом, работа автоматического регулятора заключается в изменении величины топливоподачи при изменении нагрузки и постоянном положении рычага управления, т.е. педали акселератора. При этом формируется регуляторная характеристика данного скоростного режима. Всережимный автоматический регулятор обеспечивает регулирование дизеля во всем диапазоне рабочих режимов, а водитель задает требуемый скоростной режим, нажимая на педаль акселератора.

Двухрежимный регулятор частоты вращения обеспечивает автоматическое регулирование режима пуска и минимального и номинального режимов, а все промежуточные режимы находятся под управлением водителя, который воздействует непосредственно на дозирующий орган, изменяя величину топливоподачи.

Двухрежимные регуляторы более предпочтительны на автомобильных дизелях, поскольку непосредственное воздействие на дозирующий орган уменьшает расход топлива и выброс частиц при работе на неустановившихся режимах.

Скоростные и регуляторные характеристики топливоподачи насоса VE со всережимным и двухрежимным регуляторами представлены на рисунках а, б. Соответствующие обозначения кривых и характерных точек даны в спецификации к рисунку.

Рис. Скоростные и регуляторные характеристики топливоподачи: а — с двухрежиммым регулятором; б — с всережимным регулятором; 1 — пусковая подача; 2 — подача при полной нагрузке; 3 — участок работы положительного корректора; 4 — регуляторные характеристики; 5 — холостой ход минимального режима

Всережимные регуляторы

Схемы работы всережимного регулятора частоты вращения топливного насоса VE с системой рычагов и рабочими положениями дозирующей муфты на различных нагрузочных и скоростных режимах показаны на рисунках а, б, в, г.

Рис. Работа всережимного регулятора: а — положение при пуске; б — холостой ход минимального режима; в — режим уменьшения нагрузки; г — режим увеличения нагрузки; 1 — грузы регулятора; 2 — муфта регулятора, 3 — силовой рычаг; 4 — нажимной рычаг, 5 — пружина пусковой подачи; 6 — дозирующая муфта; 7 — отсечные отверстия в плунжере; 8 — плунжер; 9 — регулировочный винт холостого хода минимального режима; 10 — рычаг управления; 11 — регулировочный винт максимального режима; 12 — ось рычага управления; 13 — рабочая пружина регулятора; 14 — фиксатор пружины; 15 — пружина минимального режима; 16 — упор силового рычага; М2 — ось вращения рычагов 4 и 5; h, и h2 активный ход плунжера на различных режимах

Грузы регулятора 1 (обычно четыре груза) установлены в держателе, который получает вращение от приводной шестеренки. Радиальное перемещение грузов трансформируется в осевое перемещение муфты регулятора 2, что изменяет положение нажимного 4 и силового 3 рычагов регулятора, которые, поворачиваясь относительно оси М2. перемещают дозирующую муфту 6,определяя тем самым активный ход плунжера 8.

В верхней части силового рычага установлена пружина холостого хода 15, а между силовым и нажимным рычагами — пластинчатая пружина пусковой подачи 5. Рычаг управления 10 воздействует на рабочую пружину регулятора 13. второй конец которой закреплен в силовом рычаге на фиксаторе 14. Таким образом. положение системы рычагов и. следовательно, дозирующей муфты определяется взаимодействием двух сил — силы предварительной затяжки рабочей пружины регулятора, определяемой положением рычага управления, и центробежной силы грузов, приведенной к муфте.

Работа регулятора при пуске дизеля

Перед пуском дизеля, когда коленчатый вал еще не вращается и топливный насос не работает, грузы регулятора находятся в состоянии покоя на минимальном радиусе, а нажимной рычаг 4 (его другое название — рычаг пуска) под действием пружины пусковой подачи 5 смещен влево на рисунке а, имея возможность качания относительно оси М2. Соответственно нижний шарнирный конец рычага обеспечивает крайне правое положение дозатора 6 относительно плунжера 8. что соответствует пусковой подаче за счет увеличенного активного хода плунжера h1. Как только двигатель запустится, грузы регулятора расходятся и муфта 2 перемещается вправо на величину хода «а», преодолевая сопротивление достаточно слабой пусковой пружины 5. Рычаг 4 при этом поворачивается на оси М2 по часовой стрелке, перемещая дозирующую муфту в сторону уменьшения подачи (влево на рис. б).

Читайте также:  Двигатель не заводится или заводится с трудом

Работа регулятора на минимальной частоте вращения холостого хода

При отсутствии нагрузки и положении рычага управления на упоре в регулировочный винт 9 дизель должен устойчиво работать на минимальной частоте вращения холостого хода в соответствии со схемой рисунка б. Регулирование этого режима обеспечивается пружиной холостого хода 15. усилие которой находится в равновесии с центробежной силой грузов, и в результате этого равновесия поддерживается подача топлива, соответствующая активному ходу плунжера h2. Работа дизеля на этом режиме соответствует точке 5 на характеристике первого рисунка. Как только скоростной режим двигателя выходит за пределы минимальной частоты вращения холостого хода, реализуется ход «с» силового рычага при сжатии пружины 15 под действием увеличивающейся центробежной силы грузов.

Работа регулятора на нагрузочных режимах

В эксплуатации дизеля со всережимным регулятором скоростной режим устанавливается водителем путем воздействия через педаль акселератора на рычаг управления 10. На рабочих режимах пружина пусковой подачи 5 и пружина 15 холостого хода не работают, и работа регулятора определяется предварительной деформацией рабочей пружины 13. При повороте рычага управления до упора 11 (рисунки в, г) в сторону увеличения скоростного режима и соответствующем растяжении рабочей пружины ее усилие передается на силовой рычаг 3 и затем через рычаг 4 на муфту регулятора 2, заставляя грузы 1 сходиться. Система рычагов при этом поворачивается относительно оси М2 против часовой стрелки на рисунке, перемещая дозирующую муфту 6 в сторону увеличения подачи до режимов внешней скоростной характеристики. Частота вращения коленчатого вала дизеля и соответственно, грузов регулятора при этом увеличивается, центробежная сила грузов и сопротивление последней усилию рабочей пружины также увеличиваются, и в какой-то момент наступает равновесие сил и равновесие положения всех элементов регулятора. При отсутствии изменения нагрузки двигатель работает на установившемся режиме при постоянной частоте вращения (не принимая во внимание естественную для ЛВС нестабильность вращения).

Если на этом режиме имеет место изменение нагрузки, то в работу вступает автоматический регулятор в соответствии со схемами, показанными на рисунках в, г. При уменьшении нагрузки частота вращения увеличивается, грузы регулятора расходятся и, преодолевая сопротивление рабочей пружины, перемещают муфту регулятора вправо (рисунок в). Система рычагов при этом поворачивается относительно оси М2 по часовой стрелке перемещая дозирующую муфту влево, в сторону уменьшения подачи. В результате формируется регуляторная ветвь 4 на первом рисунке. Если рычаг управления устанавливается в некоторое промежуточное положение, то, по сравнению с настройкой регулятора, показанной на рисунках в, г, будет образовываться одна из регуляторных характеристик, показанных пунктиром на первом рисунке б, т.е. регулятор в последнем случае начинает работать раньше — при меньшей частоте вращения.

На рисунке г показана работа регулятора при положении рычага управления на упоре 11 и при увеличении нагрузки. В этом случае частота вращения вала дизеля уменьшается, грузы регулятора сходятся, центробежная сила грузов уменьшается, и под действием усилия рабочей пружины муфта регулятора перемещается влево, а система рычагов 3 и 4 перемещает дозирующую муфту вправо, в сторону увеличения подачи. Если дизель до начала увеличения нагрузки работал на регуляторной ветви, то при увеличении подачи он будет выходить на более мощностной режим и затем на внешнюю скоростную характеристику. Если же дизель работает на внешней характеристике на номинальном или близком к нему режиме, то при увеличении нагрузки реализуется режим перегрузки, для преодоления которой дизель должен иметь достаточно высокий коэффициент приспособляемости. Положительное корректирование топливоподачи осуществляется на участке 3 характеристики с помощью положительного корректора или при соответствующем подборе характеристики топливоподачи ТНВД.

Корректоры топливоподачи

Корректирование топливоподачи в дизелях, положительное или отрицательное, осуществляется с целью формирования внешней скоростной характеристики двигателя при необходимости увеличить максимальный крутящий момент путем увеличения подачи при уменьшении частоты вращения от nном до nm на так называемом режиме перегрузки (положительное корректирование) или уменьшить дымление дизеля при работе на n Работа положительного и отрицательного корректоров

Устройство и работа положительного и отрицательного механических корректоров топливоподачи топливного насоса VE иллюстрируется рис. а, б.

Рис. Схема регулятора с положительным (а) и отрицательным (б) корректором топливоподачи: 1 — рычаг пусковой; 2 — пружины корректоров; 3 — рабочая пружина регулятора; 4 — силовой рычаг 5 — упор; 6 — рычаги корректоров; 7 — шток корректора; 8 — дозирующая муфта; 9 — пружина пусковой подачи; 10 — муфта регулятора; 11 — точка упора; Мг — ось вращения рычагов 1 и 4; М4 — ось вращения рычагов 1 и 6; ΔS — ход корректирования подачи

Начало действия прямого (положительного) корректора топливоподачи определяется жесткостью и предварительным сжатием его пружины, которые согласованы с соответствующим скоростным режимом дизеля. Работа положительного корректора происходит следующим образом. На номинальном режиме дозирующая муфта 8 занимает положение, обозначенное пунктиром на рис. а. Пружина корректора 2 при этом сжата из-за воздействия центробежной силы грузов через муфту 10 регулятора на рычаг 6, который нажимает на головку штока 7, поворачиваясь на упоре 5 в силовом рычаге 4. Рычаг 1 при этом повернут по часовой стрелке и дозатор обеспечивает цикловую подачу, которая соответствует требованиям номинального режима дизеля (см. Пунктир на рис. а). Если нагрузка на этом режиме увеличивается (режим перегрузки), частота вращения уменьшается, усилие со стороны муфты регулятора также уменьшается, и пружина корректора 2 через рычаг 6 поворачивает рычаг 1 против часовой стрелки, перемещая дозирующую муфту вправо, в сторону увеличения подачи на величину ΔS (рис. а).

Работа отрицательного корректора

При работе с минимальной частотой на внешней характеристике рычаг 6 корректора упирается в силовой рычаг в точке 5 (рис. б). Головка штока 7 корректора также упирается в силовой рычаг 4. При увеличении частоты вращения центробежная сила грузов, приведенная к муфте, преодолевает усилие пружины 2 корректора, сжимая ее. в результате чего рычаг 6 перемещается вправо на рисунке, в сторону головки штока, при этом общая ось рычагов М4 меняет свое положение. Одновременно рычаг 1 поворачивается относительно оси М2, перемещая дозирующую муфту 8 в сторону увеличения подачи. Ход корректирования ΔS определяется ходом сжатия пружины корректора до упора рычага 6 в головку штока 7. При работе дизеля на левой части внешней скоростной характеристики при увеличении нагрузки и уменьшении частоты вращения пружина 2 поворачивает рычаг 6 по часовой стрелке, а последний заставляет поворачиваться рычаг 1 относительно оси М2 по часовой стрелке, перемещая дозирующую муфту 8 в сторону уменьшения подачи, осуществляя, таким образом, отрицательное корректирование (область nмин Двухрежимные регуляторы

Читайте также:  Как выбрать двигатель для самодельного минитрактора

Устройство двухрежимного автоматического регулятора частоты вращения топливного насоса VE и его работа на различных режимах показаны на рисунках далее, имеющих общую спецификацию. Вал регулятора получает вращение от вала ТНВД через шестеренчатую повышающую передачу с передаточным отношением 1:1,6 и передает его держателю с четырьмя грузами.

Аналогичную конструкцию этого узла имеют топливные насосы VE с всережимными регуляторами, рассмотренные выше.

Величина топливоподачи изменяется при изменении положения дозирующей муфты 15, которое определяется равновесием центробежной силы грузов, приведенной к муфте, и силы от действия рабочих пружин регулятора, зависящей, в частности, от положения педали акселератора.

Режим пуска дизеля показан на рисунке. При неработающем двигателе грузы регулятора сведены и муфта 19 находится в крайнем левом положении. Рычаг корректора 16 и пусковой рычаг 18 прижимаются под действием пружины пусковой подачи 12 к муфте регулятора 19, поворачиваясь относительно оси М2. Таким образом, дозирующая муфта 15 перемещается нижним шарниром системы рычагов вправо на рисунке ниже, обеспечивая пусковую подачу. Педаль акселератора при пуске дизеля может оставаться в ненажатом положении. Величина пусковой подачи определяется активным ходом ΔS1.

Рис. Схема двухрежимного регулятора. Режим пуска дизеля: 1 — держатель грузов; 2 — грузы регулятора; 3 — серьга; 4 — ось рычага управления; 5 -пружина номинального режима; 6 — пружина частичного режима; 7 — регулировочный винт максимальной подачи; 8 — демпферная пружина; 9 — пружина холостого хода минимального режима; 10 — силовой рычаг; 11 — регулировочный рычаг; 12 — пружина пусковой подачи; 13 — поддерживающая пружина; 14 — плунжер ТНВД; 15 — дозирующая муфта; 16 — рычаг отрицательного корректора; 17 — пружина отрицательного корректора; 18 — пусковой рычаг; 19 — муфта регулятора; 20 — корпус пружин регулятора; 21 — отверстия отсечки подачи; шарниры рычажной системы регулятора: М1 — система рычагов в этой точке поддерживается двумя подвижными пальцами, установленными в рычаге 2; М4 — общая ось рычагов пускового и корректора; ΔS1 — ход дозирующей муфты.

После пуска двигателя грузы регулятора под действием центробежной силы расходятся и толкают муфту регулятора 19 вправо, преодолевая сопротивление пружины пусковой подачи 12. При этом головка штока рычага корректора 16 упирается в точке А в силовой рычаг 10, а ось М4 движется вправо на шарнире А до тех пор, пока усилие муфты регулятора окажется равным усилию пружины холостого хода 9. Соответственно, дозирующая муфта 15 перемещается шарниром М2 влево до установления подачи холостого хода, что соответствует схеме на рисунке.

Рис. Работа регулятора на холостом ходу минимального режима

На рисунке показано взаимодействие элементов регулятора при работе дизеля на частичных скоростных режимах, когда педаль акселератора слегка нажата. Последовательность, с которой вступают в работу пружины регулятора, определяется их жесткостью и предварительной деформацией. Первой работает демпферная пружина 8. за ней следует пружина частичного режима 6 и, наконец, пружина номинального режима 5.

Рычаг управления соединяется с педалью акселератора. При нажатии на нее сжимается демпферная пружина 8 и силовой рычаг притягивается влево, в результате чего дозирующая муфта перемещается вправо, в сторону увеличения подачи с соответствующим увеличением частоты вращения. Муфта регулятора 19 из-за увеличения центробежной силы грузов нажимает на рычаг корректора, который упирается.в силовой рычаг в точке в результате чего пружина холостого хода 9 максимально сжимается, и далее силовой рычаг уже двумя шарнирными точками А и В перемещается вправо, вместе с осью М2. В этих условиях, когда силовой рычаг движется вправо, а корпус пружин под действием водителя влево, пружина частичной нагрузки сжимается до момента достижения баланса сил. При уменьшении нагрузки и увеличении частоты вращения силовой рычаг будет перемещаться под действием муфты регулятора 19 вправо на ход ΔS2 пружины 6, а дозирующая муфта 15 влево, в сторону уменьшения подачи до достижения установившегося скоростного режима дизеля.

Рис. Работа регулятора на частичном скоростном режиме

Рис. Работа регулятора при полной нагрузке

Работа регулятора дизеля при полной нагрузке иллюстрируется рисунке. В этом случае педаль акселератора нажата до упора рычага управления в регулировочный винт максимального режима. Силовой рычаг 10 при этом оказывается на упоре М3, а пружины стартовая, минимального холостого хода 9, демпферная 8 и частичной нагрузки 6 — в полностью сжатом состоянии. Муфта регулятора 19 находится в равновесии под действием противоположно направленных центробежной силы грузов и силы предварительной затяжки рабочей пружины 5. Подача топлива на режиме полной нагрузки определяется активным ходом плунжера, обозначенным двумя стрелками у дозирующей муфты 15. Рассматриваемый здесь двухрежимный регулятор оснащен отрицательным корректором топливоподачи. При работе дизеля на левой ветви внешней скоростной характеристики, при n

Источник

ВСЕ О ДВИГАТЕЛЕ
Adblock
detector