Автоматический запуск трехфазного двигателя от однофазной сети

Самый простой способ подключения трехфазного двигателя в однофазную сеть

Подключение трехфазного двигателя на 380-400 вольт в однофазную сеть на 220 вольт может понадобиться, пожалуй, только в одном случае. Когда трехфазный двигатель есть в наличии и хочется его использовать. Потому как чего он будет без дела валяться? И даже сразу находится место, где его можно применить. Например, появляется чрезвычайная необходимость того, чтобы откатные ворота открывались автоматически. И разумеется эти работы необходимо выполнить своими руками и из подручных материалов. Не пугает даже поиск подходящего для этого дела редуктора.

Также часто появляется насущная потребность соорудить циркулярную пилу. Желательно с фуганком. Или же просто идет изготовление очередного точильного станка. Несмотря на то, что есть два покупных разного размера. А уж на то, что однофазный электродвигатель в данном случае был бы более экономичным, просто не обращается внимание.

Разумеется существуют разные схемы подключения трёхфазного двигателя в однофазную сеть. Однако, приведенная схема, пожалуй, является наиболее простой. В этой схеме обмотки двигателя соединяются треугольником. В этом случае у двигателя получается наибольший крутящийся момент. То есть, наиболее полно используется мощность электродвигателя. А это немаловажно при подобном подключении. Потому как при подключении в однофазную сеть мощность трехфазного двигателя снижается.

К двум вершинам треугольника подключаем напряжение 220 вольт. А к третьей вершине треугольника подключаем один из сетевых контактов через конденсатор. Этот конденсатор называется рабочей ёмкостью. Потому что он включается на все время работы двигателя.

Также параллельно рабочему конденсатору подключается пусковой конденсатор. Он подключается через кнопку включения, которая автоматически отключается после нажатия. Разумеется пусковой конденсатор включается только на время пуска. Если двигатель запускается без пускового конденсатора, то применять этот конденсатор не нужно.

При стандартных частоте 50 герц и напряжении 220-240 вольт ёмкость рабочего конденсатора C (раб.) находится по формуле:

C (раб.) = 66 × P (ном.)

где P (ном.) — номинальная мощность электродвигателя (кВт)

Ёмкость же пускового конденсатора находится по формуле

C (пуск.) = 2 × C (раб.) = 132 × P (ном.)

То есть, ёмкость пускового конденсатора должна быть минимум в два раза больше чем у рабочего.

Так как это простая схема, то для подключения лучше использовать обычные металлобумажные конденсаторы. Однако, в большинстве случаев они имеют малую ёмкость. А значит придётся соединять их в большие блоки. Подобрать нужные параметры часто проблематично. Потому можно также использовать специальные электролитические конденсаторы для работы с электродвигателями переменного тока. Они подключаются также как металлобумажные. А вот схема подключения полярных электролитических конденсаторов имеет более сложное устройство.

Обычно для того, чтобы подобрать нужную ёмкость приходится соединять несколько конденсаторов вместе. При параллельном подключении общая емкость конденсаторов суммируется. Общее напряжение параллельно соединенных конденсаторов равно наименьшему номиналу в цепи. При последовательном соединении конденсаторов общая емкость будет меньше самого маленького номинала в цепи. А общее напряжение конденсаторов при последовательном соединении суммируется.

Напряжение конденсаторов подбирается большей величины, чем напряжение сети. Амплитудное напряжение однофазной сети составляет около 310 вольт. Также необходимо взять запас на различные всплески и импульсы напряжения. Потому напряжение конденсаторов должно быть не менее 450 вольт.

При включении двигатель может начать вращаться не в ту сторону, которая нужна. Для изменения вращения нужно поменять местами два провода, подключенные к двум вершинам треугольника. После этого электродвигатель будет вращаться в другую сторону. Разумеется, подключение двигателя должно осуществляться под защитой автоматического выключателя номиналом, нужным для данной мощности двигателя. Если вы не уверены в правильности собранной схемы, то для проведения монтажных работ лучше пригласить специалиста.

Читайте также:  Как снять двигатель ниссан блюберд

Для вашего удобства подборка публикаций

Спасибо за посещение канала, чтение заметки, упоминание в социальных сетях и других интернет — ресурсах, а также подписку, лайки, дизлайки и комментарии ( Лайки и дизлайки можно ставить не регистрируясь и не заходя в аккаунт )

Источник

Автоматическое подключение трехфазного двигателя к сети 220 В.

Чтоб каждый раз не подключать пусковой конденсатор для старта электродвигателя, можно собрать простую схему на реле времени, которая будет делать это автоматически. Это актуально для систем, где приходится часто запускать моторы с помощью пускового конденсатора.

Понадобится два устройства: реле времени и пускатель.

Многое спрашивают, а можно сделать без пускателя?

В большинстве своем контакты реле времени и подобных устройств не рассчитаны на коммутацию серьёзной нагрузки как электродвигатель. Представьте себе грузовой кран или лифт запитанный и подключаемый/отключаемый от домашней розетки — вот тут тоже самое. А пускатели или контакторы специально предназначены для работы с электродвигателями, можно сказать «не разлей вода». Но не все . Есть различные категории этих устройств, для моторов часто используют категорию AC-3. Также при выключении индуктивных нагрузок происходит перенапряжение и искрение. Контакты реле времени на это тоже не рассчитаны, а у пускателя подходят.

Сами пускатели/контакторы выбираются по мощности электродвигателя и категорий применения (AC-3 и пр).

Питание катушек пускателей и реле времени бывают на различные напряжения. Для однофазной сети 220 В. они соответственно должны быть на 220 В.

Как соединить.

Схема сделана на таймере H3Y-2 ; 0-30 сек. из Китая. Это наверное самое доступное реле времени (об нём в конце статьи). Обычно первой собираю цепь управления:

Цифры и буквы обозначены не просто так. Для большинства электротехнических изделий они одинаковые и помогают собирать схемы.

Далее добавляю пусковой и рабочий конденсаторы с клемником электродвигателя:

Логика работы схемы такая: когда подается питание, реле времени сразу включает контактор, а тот в свою очередь подсоединяет пусковой конденсатор к рабочему. Получается параллельное соединение емкостей. И как реле отсчитывает установленную выдержку времени, то отключает пусковой конденсатор.

Не должно получиться так, что рабочий запитан от фазы, а пусковой от ноля или идут на разные клеммы мотора. Даже не знаю, что при этом произойдет. Только строгое параллельное соединение .

Подбор конденсаторов.

Если на вскидку то рабочий берут 7 мкф на каждые 100 ватт мощности двигателя и пусковой 1х-3х емкости рабочего, в зависимости от условий старта.

Сами конденсаторы неполярные и отличаются от друг дурга. Рабочий рассчитан на длительную работу , все время подключен к двигателю. Его номинальное напряжение около 450 В. Пусковой работает несколько секунд, его номинально напряжение 300-350 В.

Простой расчет подходит для достаточно нагруженного мотора, а вот если он недогружен могут возникнуть проблемы, подробности тут . Однако если нагружен, то тоже могут.

Недостатки схемы.

1. После выключения на пусковом конденсатора остается заряд и будет держаться там достаточно долго, если не бесконечно. Поэтому должна быть предусмотрена система его разряда. Думаю подойдет лампочка на 380 вольт или резистор 500 кОм, подключенные к нему паралельно.

2. Нету никакой обратной связи с двигателем. Если установленного времени не хватит на запуск (допустим летом его хватало, а зимой не хватило), то мотор может не стартануть, просто остаться гудеть и через какое-то время сгорит.

Возможны другие недостатки.

О самом реле времени H3Y-2 с али.

Конечно в нем все по максимуму удешевлено. Для электроники использованы не самые известные конденсаторы, на контактах нет слоя серебра. Катушка выглядит нормально, а само устройство спаяно неплохо.

Читайте также:  Чем очистить нагар в двухтактном двигателе

Источник

Бесконденсаторный пуск трехфазных электродвигателей от однофазной сети

Вращающий момент, вполне достаточный для запуска указанных электродвигателей от однофазной сети 220 В/50 Гц, можно получить за счет сдвига токов по фазе в фазных обмотках ЭД, применив для этого двунаправленные электронные ключи, включение которых осуществляется в определенное время.
Исходя из этого, для пуска 3-фазных ЭД от однофазной сети были разработаны и отлажены две простые схемы. Обе схемы опробованы на ЭД мощностью 0,5. 2,2 кВт и показали очень хорошие результаты (время пуска не намного больше, чем в трехфазном режиме). В схемах применяются симисторы, управляемые импульсами разной полярности, и симметричный динистор, который формирует управляющие сигналы в течение каждого полупериода питающего напряжения.

Первая схема (рис.1) предназначена для пуска ЭД с номинальной частотой вращения, равной или меньше 1500 об/мин, обмотки которых соединены в треугольник. В этой схеме электронный ключ (симистор Т1) обеспечивает сдвиг тока в обмотке «С» на некоторый угол (50. 70°), что обеспечивает достаточный вращающий момент.

Фазосдвигающим устройством является RC-цепочка. Изменяя сопротивление R2, получают на конденсаторе С напряжение, сдвинутое относительно питающего напряжения на некоторый угол. В качестве ключевого элемента в схеме применен симметричный динистор Т2. В момент, когда напряжение на конденсаторе достигнет напряжения переключения динистора, он подключит заряженный конденсатор к управляющему выводу симистора Т1 и включит этот двунаправленный силовой ключ.

Вторая схема (рис.2) предназначена для пускa ЭД с номинальной частотой вращения равной 3000 об/мин, а также для электродвигателей, работающих на механизмы с большим моментом сопротивления при пуске. В этих случаях требуется значительно больший пусковой момент. Поэтому была применена схема соединения обмоток ЭД «разомкнутая звезда, которая обеспечивает максимальный пусковой момент. В указанной схеме фазосдвигающие конденсаторы заменены двумя электронными ключами. Один ключ включен последовательно с обмоткой фазы «А» и создает в ней «индуктивный» (отстающий)
сдвиг тока, второй — включен параллельно обмотке фазы «В» и создает в ней «емкостной» (опережающий) сдвиг тока. Здесь учитывается то, что сами обмотки ЭД смещены в пространстве на 120 электрических градусов одна относительно другой.
Наладка заключается в подборе оптимального угла сдвига токов в фазных обмотках, при котором происходит надежный запуск ЭД. Это можно сделать без применения специальных приборов. Выполняется она следующим образом.
Подача напряжения на ЭД осуществляется пускателем нажимного «ручного» типа ПНВС-10, через средний полюс которого подключается фазосдвигающая цепочка. Контакты среднего полюса замкнуты только при нажатой кнопке «Пуск».
Нажав кнопку «Пуск», путем вращения движка подстроечного сопротивления R2 подбирают необходимый пусковой момент. Так поступают при наладке схемы, показанной на рис.2.
При наладке схемы рис.1 из-за прохождения больших пусковых токов некоторое время (до разворота) ЭД сильно гудит и вибрирует. В этом случае лучше изменять величину R2 ступенями при снятом напряжении, а затем, путем кратковременной подачи напряжения, проверять, как происходит запуск ЭД. Если при этом угол сдвига напряжения далек от оптимального, то ЭД гудит и вибрирует очень сильно. По мере приближения к оптимальному углу двигатель «пытается» вращаться в ту или другую сторону, а при оптимальном запускается достаточно хорошо.
Автор производил отладку схемы, показанной на рис.1, на ЭД 0,75 кВт 1500 об/мин и 2,2 кВт 1500 об/мин, а схемы, показанной на рис.2, на ЭД 2,2 кВт 3000 об/мин.
При этом опытным путем установлено, что подобрать значения R и С фазовращающей цепочки, соответствующие оптимальному углу, можно предварительно. Для этого нужно последовательно с ключом (симистором) соединить лампу накаливания 60 Вт и включить их в сеть 220 В. Изменяя величину R, надо установить напряжение на лампе 170 В (для схемы рис.1) и 100 В (для схемы рис.2). Эти напряжения замерялись стрелочным прибором магнитоэлектрической системы, хотя форма напряжения на нагрузке не синусоидальная.
Необходимо отметить, что добиться оптимальных углов сдвига токов можно при различных сочетаниях значений R и С фазосдвигающей цепочки, т.е. изменив номинал емкости конденсатора, придется подобрать и соответствующее ему значение сопротивления.
Эксперименты проводились с симисторами ТС-2-10 и ТС-2-25 без радиаторов. В этой схеме они работали очень хорошо. Можно применить и другие симисторы с двухполярным управлением на соответствующие рабочие токи и класса напряжения не ниже 7. При использовании импортных симисторов в пластмассовом корпусе их следует установить на радиаторы.
Симметричный динистор DB3 можно заменить отечественным КР1125. У него немного меньше напряжение переключения.
Конденсаторы С любые неполярные, рассчитанные на рабочее напряжение не менее 50 В (лучше — 100 В). Можно применить также два полярных конденсатора, включенных последовательно-встречно (в схеме рис.2 их номинал должен быть 3,3 мкФ каждый).

Читайте также:  Минеральное моторное масло для каких двигателей

Источник

Трехфазный двигатель в однофазную сеть: 7 доступных способов

Домашнему мастеру часто приходится возиться с самодельными станками и механизмами, значительно облегчающими работу. Для этих целей используют трехфазный двигатель, подключаемый в однофазную сеть своими руками.

Однако не всегда умельцы добиваются желаемого успеха, а в отдельных случаях они терпят разочарование. Чтобы избежать подобных ошибок рекомендую прочитать материал этой статьи.

Вы узнаете не только технологию работу, но и те трудности, которые сопровождают каждый их семи методов.

Как работает трехфазный двигатель

Изначально его создают для вращения от трех симметрично расположенных в пространстве магнитных потоков, создаваемых протекающими по обмоткам токами от фазных или линейных напряжений сети 380 вольт.

Их в энергетике принято представлять графически: векторными диаграммами.

Другие математические описания, включая методы комплексных чисел, применяются специалистами расчетчиками.

Обмотки трехфазного двигателя в заводском исполнении могут быть собраны по схемам:

Более подробно с этой информацией можно отдельно ознакомиться в статье об однофазном подключении трехфазного двигателя . Надеюсь, что вам будет понятно ее изложение.

При таком подключении двигатель работает с минимальными потерями энергии, имеет лучший КПД. Ведь на этот режим он спроектирован, рассчитан и создан.

Когда трехфазный электродвигатель включают в однофазную сеть, то потери его мощности неизбежны . Они могут превышать 50% или даже больше. Это надо всегда учитывать.

Самый простой способ запуска

Если обмотки собраны в треугольник и на два любых вывода подать напряжение 220 вольт, то можно раскрутить ротор простым шнуром. Обмотав его вокруг вала, а затем резко дернув за свободный конец.

Метод не очень эффективный, но иногда он может пригодиться. Потери мощности здесь большие. Им пользуются очень редко.

Способ №2: конденсаторный запуск схемы звезда

Обмотки собирают концами на одной клемме — нейтрали, а началами выводят на калымную колодку для подключения питающих кабелей.

Напряжение 220 подают через две группы конденсаторов:

1. рабочую, сдвигающую ток относительно вектора подводимого напряжения на 90 угловых градусов;

2. пусковую, кратковременно облегчающую раскрутку ротора при начале запуска.

Способ №3: конденсаторный запуск схемы треугольника

Технология сборки обмоток отличается от предыдущего метода: они чередуются соединением начала одной с концом последующей.

Для запуска двигателя также подбираются рабочие и пусковые конденсаторы. Они рассчитываются по эмпирическим формулам и должны выдерживать увеличенное линейное напряжение. Минимальная величина должна быть не менее 500 вольт. Иначе возможен их пробой.

Эти две схемы конденсаторного запуска по системе звезды или треугольника являются самыми популярными и доступными.

Способ №4: без конденсаторный запуск трехфазного двигателя

По этой методике создается электронный ключ, который осуществляет сдвиг фазы тока в одной из подключений обмотке на угол φ.

Источник

Adblock
detector