Асинхронные однофазные двигатели технические характеристики

Характеристики однофазных асинхронных электродвигателей

Однофазные асинхронные двигатели находят широкое применение в технике и быту. Производство однофазных асинхронных электродвигателей мощностью от долей ватта до сотен ватт составляет более половины производства всех машин малой мощности, и их выпуск непрерывно возрастает.

Однофазные двигатели принято делить на две категории:

двигатели общего назначения» к которым относят электродвигатели промышленного и битового назначения;

двигатели автоматических устройств — управляемые и неуправляемые двигатели переменного тока и специализированные электрические машины малой мощности (тахогенераторы, вращающиеся трансформаторы, сельсины и т.п.).

Значительная часть асинхронных электродвигателей — это двигатели общего назначения, которые предназначены для работы от однофазной сети переменного тока. Однако существует довольно обширная группа универсальных асинхронных электродвигателей, предназначенных для работы как в однофазных, так и в трехфазных сетях.

Конструкция универсальных двигателей практически не отличается от традиционной конструкции трехфазных асинхронных машин. При работе от трехфазной сети эти двигатели имеют характеристики подобные характеристикам трехфазных двигателей.

Однофазные двигатели имеют короткозамкнутый ротор, а обмотка статора может выпускаться в различных вариантах. Наиболее часто на статоре укладывается рабочая обмотка, заполняющая две трети пазов, и пусковая обмотка, заполняющая оставшуюся треть пазов. Рабочая обмотка рассчитывается для продолжительного режима, а пусковая — лишь на период пуска. Поэтому она выполняется проводом малого сечения и содержит значительное число витков. Для создания пускового момента а пусковую обмотку включают фазосдвигающие элементы — резисторы или конденсаторы.

Асинхронные двигатели малой мощности могут выполняться двухфазными, когда рабочая обмотка, укладываемая на статоре, имеет две фазы, смешённые в пространстве на 90°. В одну до фаз постоянно включен фазосмещающий элемент — конденсатор или резис т ор, обеспечивающие определенный фазовый сдвиг между токами обмоток.

Двигатель с постоянно включённым в одну из фаз конденсатором обычно называется конденсаторным. Емкость фазосмещающего конденсатора может иметь постоянную величину, но в ряде случаев величина ёмкости может быть различной для пуска и для рабочего режима.

Особенностью однофазных асинхронных двигателей является возможность вращения ротора в различных направлениях. Направление вращения определяется направлением пускового момента.

При малых сопротивлениях ротора (S кр при более высокой частоте вращения имеет место режим генератора.

Особенностью однофазных двигателей является и то, что его максимальный момент зависит от сопротивления ротора. С ростом активного сопротивления ротора максимальный момент уменьшается, а при больших величинах сопротивления S кр > 1 становится отрицательным.

При выборе типа электродвигателя для привода прибора или механизма необходимо знать его характеристики. Основными являются моментные характеристики (начальный пусковой момент, максимальный вращающий момент, минимальный вращающий момент), частота вращения, виброакустические характеристики. В отдельных случаях необходимыми также являются энергетические и весовые характеристики.

В качестве примера рассчитаны характеристики однофазного двигателя имеющего следующие параметры:

частота сети — 50 Гц;

напряжение сети — 220 В;

активное сопротивление обмотки статора — 5 Ом;

индуктивное сопротивление обмотки статора — 9,42 Ом;

индуктивное сопротивление обмотки ротора — 5,6 Ом;

осевая длина машины — 0,1 м;

число витков в обмотке статора -320;

радиус расточки статора — 0,0382 м;

число пазов — 48;

воздушный зазор — 1,0 х 10 3 м.

коэффициент индуктивности ротора 1,036.

Однофазная обмотка заполняет две трети пазов статора.

На рис. 1 показаны зависимости тока однофазного электродвигателя и электромагнитного момента от скольжения. В режиме идеального холостого хода ток двигателя потребляемый из сети а основном для создания магнитного поля, имеет относительно большую величину.

Для моделируемого двигателя величина намагничивающего тока составляет около 30 % пускового тока, для трехфазных двигателей такой же мощности — 10-15%. Электромагнитный момент в режиме идеального холостого хода имеет отрицательную величину, которая растёт с увеличением сопротивления роторной цепи. При скольжении S = 1 электромагнитный момент равен нулю, что подтверждает правильность работы модели.

Рис.1. Огибающие векторного потенциала и магнитной индукции в зазоре двигателя при скольжении s=1

Читайте также:  Двигатель д 240 технические характеристики крутящий момент

Рис. 2. Зависимость тока и электромагнитного момента однофазного асинхронного двигателя от скольжения

Зависимости полезной и потребляемой мощностей от скольжения (рис. 3) имеют традиционный характер. КПД двигателя в режиме идеального холостого хода имеет отрицательный знак в соответствии с отрицательным моментом, а коэффициент мощности в этом режиме имеет весьма малую величину (0,125 для моделируемого двигателя).

Заниженное, по сравнению с трёхфазными двигателями, значение коэффициента мощности объясняется большой величиной намагничивающего тока. По мере увеличения нагрузки величина коэффициента мощности возрастает и становится соизмеримой с аналогичным показателем трехфазных двигателей (рис. 4).

Рис. 3. Зависимость полезной и потребляемой мощности однофазного асинхронного двигателя от скольжения

Рис. 4. Зависимость коэффициента полезного действия и коэффициента мощности однофазного асинхронного двигателя от скольжения

С ростом активного сопротивления ротора величина электромагнитного момента уменьшается, а при критических скольжениях, превышающих единицу, становится отрицательным.

На рис. 5 показаны зависимости электромагнитного момента однофазного двигателя от скольжения для различных величин электропроводности вторичной среды двигателя.

Рис. 5. Зависимость электромагнитного момента однофазного двигателя от скольжения при различных сопротивлениях ротора (1 — 17 х 10 6 См/м, 2 — 1,7 х 10 6 См/м)

Конденсаторные электродвигатели имеют две постоянно включенные в сеть обмотки. Одна из них включается в сеть непосредственно, вторая — последовательно с конденсатором, обеспечивающим необходимый фазовый сдвиг.

Обе обмотки занимают одинаковое число пазов статора, а число их витков и ёмкость конденсатора рассчитывается таким образом, чтобы при определенном скольжении обеспечивалось круговое вращающееся магнитное поле. Наиболее часто в качестве такого скольжения принимается номинальное. Однако в таком случае пусковой момент оказывается значительно меньше номинального.

Магнитное поле в режиме пуска является эллиптическим, в значительной мере сказывается влияние обратно бегущих составляющих магнитного поля. Если емкость конденсатора увеличить, выбрав ей из условия получения кругового поля при пуске, то происходит уменьшение момента и снижение энергетических показателей при номинальном скольжении.

Возможен и третий вариант, когда круговое поле соответствует скольжению большей величины, чем при номинальном режиме. Но и этот путь не является оптимальным, так как увеличение момента сопровождается значительным увеличением потерь. Увеличение пускового момента конденсаторного двигателя может быть достигнуто за счёт увеличения активного сопротивления ротора. Этот способ приводит к увеличению потерь при любых скольжениях, вследствие чего снижается КПД двигателя.

Рис. 6. Зависимость токов конденсаторного двигателя от скольжения ( I р.о — ток рабочей обмотки, I к.о — ток конденсаторной обмотки, Is — ток двигателя)

Рис. 7. Зависимость потребляемой P 1 и полезной P2 мощности конденсаторного двигателя от скольжения

Рис. 8. Зависимость коэффициента полезного действия и коэффициента мощности и электромагнитного момента конденсаторного двигателя от скольжения

Конденсаторный двигатель обладает вполне удовлетворительными энергетическими показателям, высоким коэффициентом мощности, величина которого превосходит коэффициент мощности трехфазного двигателя, а при повышенном сопротивлении ротора и значительной ёмкости — высоким пусковым моментом. При этом, как было указано выше, двигатель имеет пониженное значение КПД.

Рис. 9. Векторная диаграмма конденсаторного двигателя при скольжении s = 0 ,1

Векторная диаграмма (рис. 9) показывает, что при выбранном значении емкости конденсатора ток конденсаторной обмотки является опережающим по отношению к напряжению сети, а ток рабочей обмотки — отстающим. На диаграмме также видно, что при скольжении, близком к номинальному, магнитное поле двигателя имеет эллиптический характер. Для получения кругового поля величина емкости конденсатора должна быть уменьшена с таким расчетом, чтобы токи обеих обмоток были равны по модулю.

Источник

Однофазный асинхронный электродвигатель

Однофазный асинхронный электродвигатель с пусковой обмоткой

Конструкция однофазного двигателя с вспомогательной или пусковой обмоткой

Статор имеет две обмотки, расположенные под углом 90° относительно друг друга. Основная обмотка называется главной (рабочей) и обычно занимает 2/3 пазов сердечника статора, другая обмотка называется вспомогательной (пусковой) и обычно занимает 1/3 пазов статора.

Двигатель фактически является двухфазным, но так как рабочей является только одна обмотка, электродвигатель называют однофазным.

Ротор обычно представляет из себя короткозамкнутую обмотку, также из-за схожести называемой «беличьей клеткой». Медные или алюминиевые стержни которого с торцов замкнуты кольцами, а пространство между стержнями чаще всего заливается сплавом алюминия. Так же ротор однофазного двигателя может быть выполнен в виде полого немагнитного или полого ферромагнитного цилиндра.

Принцип работы однофазного асинхронного двигателя

Для того чтобы лучше понять работу однофазного асинхронного двигателя, давайте рассмотрим его только с одним витком в главной и вспомогательной обмотки.

Читайте также:  Как можно промыть систему охлаждения двигателя ваз

Рассмотрим случай когда в вспомогательной обмотки не течет ток. При включении главной обмотки статора в сеть, переменный ток, проходя по обмотке, создает пульсирующее магнитное поле, неподвижное в пространстве, но изменяющееся от +Фmах до -Фmах.

Если поместить ротор, имеющий начальное вращение, в пульсирующее магнитное поле, то он будет продолжать вращаться в том же направлении.

Чтобы понять принцип действия однофазного асинхронного двигателя разложим пульсирующее магнитное поле на два одинаковых круговых поля, имеющих амплитуду равную Фmах/2 и вращающихся в противоположные стороны с одинаковой частотой:

,

  • где nпр – частота вращения магнитного поля в прямом направлении, об/мин,
  • nобр – частота вращения магнитного поля в обратном направлении, об/мин,
  • f1 – частота тока статора, Гц,
  • p – количество пар полюсов,
  • n1 – скорость вращения магнитного потока, об/мин

Действие пульсирующего поля на вращающийся ротор

Рассмотрим случай когда ротор, находящийся в пульсирующем магнитном потоке, имеет начальное вращение. Например, мы вручную раскрутили вал однофазного двигателя, одна обмотка которого подключена к сети переменного тока. В этом случае при определенных условиях двигатель будет продолжать развивать вращающий момент, так как скольжение его ротора относительно прямого и обратного магнитного потока будет неодинаковым.

Будем считать, что прямой магнитный поток Фпр, вращается в направлении вращения ротора, а обратный магнитный поток Фобр — в противоположном направлении. Так как, частота вращения ротора n2 меньше частоты вращения магнитного потока n1, скольжение ротора относительно потока Фпр будет:

,

  • где sпр – скольжение ротора относительно прямого магнитного потока,
  • n2 – частота вращения ротора, об/мин,
  • s – скольжение асинхронного двигателя

Магнитный поток Фобр вращается встречно ротору, частота вращения ротора n2 относительно этого потока отрицательна, а скольжение ротора относительно Фобр

,

  • где sобр – скольжение ротора относительно обратного магнитного потока

Согласно закону электромагнитной индукции прямой Фпр и обратный Фобр магнитные потоки, создаваемые обмоткой статора, наводят в обмотке ротора ЭДС , которые соответственно создают в короткозамкнутом роторе токи I2пр и I2обр. При этом частота тока в роторе пропорциональна скольжению, следовательно:

,

  • где f2пр – частота тока I2пр наводимого прямым магнитным потоком, Гц

,

  • где f2обр – частота тока I2обр наводимого обратным магнитным потоком, Гц

Таким образом, при вращающемся роторе, электрический ток I2обр, наводимый обратным магнитным полем в обмотке ротора, имеет частоту f2обр, намного превышающую частоту f2пр тока ротора I2пр, наведенного прямым полем.

Согласно закону Ампера, в результате взаимодействия электрического тока I2пр с магнитным полем Фпр возникает вращающий момент

,

  • где Mпр – магнитный момент создаваемый прямым магнитным потоком, Н∙м,
  • сM — постоянный коэффициент, определяемый конструкцией двигателя

Электрический ток I2обр, взаимодействуя с магнитным полем Фобр, создает тормозящий момент Мобр, направленный против вращения ротора, то есть встречно моменту Мпр:

,

  • где Mобр – магнитный момент создаваемый обратным магнитным потоком, Н∙м

Результирующий вращающий момент, действующий на ротор однофазного асинхронного двигателя,

,

Тормозящее действие обратного поля

При работе однофазного двигателя в пределах номинальной нагрузки, то есть при небольших значениях скольжения s = sпр, крутящий момент создается в основном за счет момента Мпр. Тормозящее действие момента обратного поля Мобр — незначительно. Это связано с тем, что частота f2обр много больше частоты f2пр, следовательно, индуктивное сопротивление рассеяния обмотки ротора х2обр = x2sобр току I2обр намного больше его активного сопротивления. Поэтому ток I2обр, имеющий большую индуктивную составляющую, оказывает сильное размагничивающее действие на обратный магнитный поток Фобр, значительно ослабляя его.

,

  • где r2 — активное сопротивление стержней ротора, Ом,
  • x2обр — реактивное сопротивление стержней ротора, Ом.

Если учесть, что коэффициент мощности невелик, то станет, ясно, почему Мобр в режиме нагрузки двигателя не оказывает значительного тормозящего действия на ротор однофазного двигателя.

Действие пульсирующего поля на неподвижный ротор

При неподвижном роторе (n2 = 0) скольжение sпр = sобр = 1 и Мпр = Мобр, поэтому начальный пусковой момент однофазного асинхронного двигателя Мп = 0. Для создания пускового момента необходимо привести ротор во вращение в ту или иную сторону. Тогда s ≠ 1, нарушается равенство моментов Мпр и Мобр и результирующий электромагнитный момент приобретает некоторое значение .

Читайте также:  Какое лучше масло для двигателя 0w30 или 5w40

Пуск однофазного двигателя. Как создать начальное вращение?

Одним из способов создания пускового момента в однофазном асинхронном двигателе, является расположение вспомогательной (пусковой) обмотки B, смещенной в пространстве относительно главной (рабочей) обмотки A на угол 90 электрических градусов. Чтобы обмотки статора создавали вращающееся магнитное поле токи IA и IB в обмотках должны быть сдвинуты по фазе относительно друг друга. Для получения фазового сдвига между токами IA и IB в цепь вспомогательной (пусковой) обмотки В включают фазосмещающий элемент, в качестве которого используют активное сопротивление (резистор), индуктивность (дроссель) или емкость (конденсатор) [1].

После того как ротор двигателя разгонится до частоты вращения, близкой к установившейся, пусковую обмотку В отключают. Отключение вспомогательной обмотки происходит либо автоматически с помощью центробежного выключателя, реле времени, токового или дифференциального реле, или же вручную с помощью кнопки.

Таким образом, во время пуска двигатель работает как двухфазный, а по окончании пуска — как однофазный.

Подключение однофазного двигателя

С пусковым сопротивлением

Двигатель с расщепленной фазой — однофазный асинхронный двигатель, имеющий на статоре вспомогательную первичную обмотку, смещенную относительно основной, и короткозамкнутый ротор [2].

Однофазный асинхронный двигатель с пусковым сопротивлением — двигатель с расщепленной фазой, у которого цепь вспомогательной обмотки отличается повышенным активным сопротивлением.

Для запуска однофазного двигателя можно использовать пусковой резистор, который последовательно подключается к пусковой обмотки. В этом случае можно добиться сдвига фаз в 30° между токами главной и вспомогательной обмотки, которого вполне достаточно для пуска двигателя. В двигателе с пусковым сопротивлением разность фаз объясняется разным комплексным сопротивлением цепей.

Также сдвиг фаз можно создать за счет использования пусковой обмотки с меньшей индуктивностью и более высоким сопротивлением. Для этого пусковая обмотка делается с меньшим количеством витков и с использованием более тонкого провода чем в главной обмотке.

Отечественной промышленностью изготавливается серия однофазных асинхронных электродвигателей с активным сопротивлением в качестве фазосдвигающего элемента серии АОЛБ мощностью от 18 до 600 Вт при синхронной частоте вращения 3000 и 1500 об/мин, предназначенных для включения в сеть напряжением 127, 220 или 380 В, частотой 50 Гц.

С конденсаторным пуском

Двигатель с конденсаторным пуском — двигатель с расщепленной фазой, у которого цепь вспомогательной обмотки с конденсатором включается только на время пуска.

Среди фазосдвигающих элементов, только конденсатор позволяет добиться наилучших пусковых свойств однофазного асинхронного электродвигателя.

Двигатели в цепь которых постоянно включен конденсатор используют для работы две фазы и называются — конденсаторными. Принцип действия этих двигателей основан на использовании вращающегося магнитного поля.

Однофазный электродвигатель с экранированными полюсами

Двигатель с экранированными полюсами — двигатель с расщепленной фазой, у которого вспомогательная обмотка короткозамкнута.

Статор однофазного асинхронного двигателя с экранированными полюсами обычно имеет явно выраженные полюса. На явно выраженных полюсах статора намотаны катушки однофазной обмотки возбуждения. Каждый полюс статора разделен на две неравные части аксиальным пазом. Меньшую часть полюса охватывает короткозамкнутый виток. Ротор однофазного двигателя с экранированными полюсами — короткозамкнутый в виде «беличьей» клетки.

При включении однофазной обмотки статора в сеть в магнитопроводе двигателя создается пульсирующий магнитный поток. Одна часть которого проходит по неэкранированной Ф’, а другая Ф» — по экранированной части полюса. Поток Ф» наводит в короткозамкнутом витке ЭДС Ek, в результате чего возникает ток Ik отстающий от Ek по фазе из-за индуктивности витка. Ток Ik создает магнитный поток Фk, направленный встречно Ф», создавая результирующий поток в экранированной части полюса Фэ=Ф»+Фk. Таким образом, в двигателе потоки экранированной и неэкранированной частей полюса сдвинуты во времени на некоторый угол.

Пространственный и временной углы сдвига между потоками Фэ и Ф’ создают условия для возникновения в двигателе вращающегося эллиптического магнитного поля, так как Фэ ≠ Ф’.

Пусковые и рабочие свойства рассматриваемого двигателя невысоки. КПД намного ниже, чем у конденсаторных двигателей такой же мощности, что связано со значительными электрическими потерями в короткозамкнутом витке.

Однофазный электродвигатель с асимметричным магнитопроводом статора

Статор такого однофазного двигателя выполняется с ярко выраженными полюсами на не симметричном шихтованном сердечнике. Ротор — короткозамкнутый типа «беличья клетка».

Данный электродвигатель для работы не требует использования фазосдвигающих элементов. Недостатком данного двигателя является низкий КПД.

Источник

Adblock
detector