Асинхронный двигатель принцип работы применение

Содержание
  1. Асинхронный двигатель — что это такое, как устроен и где используется?
  2. Определение и немного истории
  3. Принцип работы
  4. Конструкция
  5. Короткозамкнутый и фазный ротор
  6. Схема соединения обмоток статора
  7. Напряжение и схема подключения
  8. Заключение
  9. Принцип работы асинхронного двигателя
  10. Строение двигателя
  11. Принцип действия
  12. Как вращается ротор
  13. Гребневые асинхронные двигатели
  14. Подключение
  15. Аналогия с муфтой
  16. Достоинства и недостатки
  17. Трехфазный асинхронный двигатель
  18. Трехфазный асинхронный двигатель с короткозамкнутым ротором
  19. Концепция вращающегося магнитного поля
  20. Действие вращающегося магнитного поля на замкнутый виток
  21. Короткозамкнутый ротор асинхронного двигателя
  22. Скольжение асинхронного двигателя. Скорость вращения ротора
  23. Преобразование энергии
  24. Параметры асинхронного двигателя
  25. Режимы работы
  26. Регулирование частоты вращения асинхронных двигателей

Асинхронный двигатель — что это такое, как устроен и где используется?

Сегодня есть множество типов электрических двигателей: коллекторные двигатели постоянного тока и универсальные, двигатели переменного тока синхронные и асинхронные, бесщеточные двигатели постоянного тока и синхронные двигатели с постоянными магнитами, шаговые двигатели и сервоприводы и т.д. Но самым распространенным на производстве был, есть и будет – асинхронный электродвигатель с короткозамкнутым ротором. В этой статье мы поговорим о том, что это такое и в чем заключаются его особенности.

Определение и немного истории

Автором асинхронного двигателя считают Михаила Осиповича Доливо-Добровольского, который в 1889 году получил патент на двигатель с ротором типа «Беличья клетка», а в 1890 году на двигатель с фазным ротором, которые без особых изменений в конструкции используются и сегодня. А первые исследования и наработки в этом направлении были проведены в 1888 Галилео Феррарисом и Николой Тесла независимо друг от друга.

Главным отличием разработки Доливо-Добровольского от разработок Теслы было использование трёхфазной, а не двухфазной конструкции статора. Демонстрация первых двигателей состоялась на Международной электротехнической выставке во Франкфурте на Майне в сентябре 1891 года. Там представили три трёхфазных асинхронных электродвигателя, самый мощный из которых был на 1.5 кВт. Конструкция этих машин оказалась настолько удачно, что не пережила весомых изменений до наших дней.

Определение асинхронной машины звучит следующим образом:

Асинхронной называется электрическая машина переменного тока, в которой частота вращения ротора не равна частоте вращения магнитного поля, создаваемого обмотками статора.

Принцип работы

В любом электродвигателе ротор приводится во вращение в результате взаимодействия магнитных полей ротора и статора и работы силы Ампера. Для создания магнитного поля используются либо постоянные магниты, либо электромагниты — обмотки статора и ротора. Одну из обмоток (ротора или статора) называют обмоткой возбуждения, вторую обмотку называют обмоткой якоря. Асинхронный двигатель отличается от других типов электромашин тем, что у него нет выраженной обмотки возбуждения, отсюда возникает вопрос «если нет обмотки возбуждения, то как создаётся магнитное поле?», если опустить некоторые особенности, то ответ на этот вопрос достаточно простой — асинхронный двигатель почти как трансформатор.

Напряжение от сети подключают к обмоткам статора. В них протекает электрический ток, в результате чего возникает магнитное поле статора. Так как сеть трёхфазная, фазы токов и напряжений каждой из фаз сдвинуты друг относительно друга на 120˚. Сила тока изменяется по синусоидальному закону и ток протекает то в одной, то в другой обмотке. Из-за этого магнитное поле получается вращающимся, что наглядно иллюстрирует ЭТО ВИДЕО

Магнитное поле статора индуцирует ЭДС в обмотках ротора (хоть короткозамкнутого, хоть фазного, о конструкции и видах мы поговорим дальше). Так как обмотки ротора закорочены или подключены к сопротивлениям — в них начинает протекать электрический ток, из-за которого возникает еще одно магнитное поле, которое, взаимодействуя с полем статора, приводит во вращение ротор.

Скорость вращения поля статора называют «синхронной», а скорость вращения ротора «асинхронной», из-за такой особенности этот тип электромашин и получил своё название. Ротор всегда немного отстает от поля статора, разность этих скоростей называют «скольжением». Скорость вращения (оборотов в минуту) поля статора зависит от частоты тока в питающей сети и числа его полюсов, если проще — от количества катушек в обмотке, и вычисляется по формуле:

где f – частота напряжения питающей сети, р – число пар полюсов, 60 – секунд в минуте

Синхронная скорость двигателя с одной парой полюсов равна: 60*50/1=3000 оборотов в минуту. Но асинхронная скорость или скорость вращения ротора будет несколько ниже, как отмечалось ранее. Обычно она находится в районе 2700-2950 об/мин, а скольжение лежит в пределах 2-8% (зависит от типа электродвигателя, его мощности и нагрузки на валу). Скольжение измеряется в относительных величинах или в процентах, и рассчитывается по формуле:

где n1 — синхронная скорость вращения, n2 — скорость вращения ротора.

Конструкция

Конструкция асинхронного двигателя, пожалуй, самая простая среди его аналогов. Он состоит из ротора и статора. Зачастую на статоре расположена трёхфазная обмотка, исключение составляют двигатели, предназначенные для работы в однофазной сети с двухфазной обмоткой или с рабочей и пусковой обмоткой. Статор состоит из металлического корпуса и сердечника с обмотками (собственно их называют обмоткой статора).

Так как двигатель питается переменным током, возникает проблема, связанная с потерями на блуждающие токи (т.н. токи Фуко), для этого сердечник статора набирают из тонких пластин. Стальные пластины для предотвращения контакта друг с другом изолируются окалиной, скрепляются лаком. Ток, протекающий в обмотках статора, называют током статора.

Корпус статора закрывается с двух сторон подшипниковыми щитами, в них, соответственно, устанавливаются подшипники скольжения или качения, в зависимости от мощности и размеров машины. Подшипники закрываются крышками, это нужно для их смазки, обычно используют пластичную смазку, как литол, солидол и подобные.

Реже, в больших и мощных электрических машинах могут использоваться опорные подшипники скольжения с циркуляционной системой смазки (жидкостная смазка). В них маслонасос закачивает масло, в рабочем режиме ротор таких машин скользит по тонкой масляной плёнке, подобно тому, как это происходит во вкладышах на ДВС.

По конструкции корпуса и типу крепления различают двигатели на лампах или с фланцевым креплением, также бывают с комбинированным типом крепления — с лапами и фланцем.

В зависимости от типа двигателя вал из него может выходить как с одной, так и с обеих сторон. К нему присоединяется исполнительный механизм, для этого конец выполняется конической или цилиндрической формы или с проточкой для установки шпонки и соединения с исполнительным механизмом.

В большинстве электродвигателей используется принудительное воздушное охлаждения. Для этого на корпусе продольно располагаются рёбра, а на другом конце вала устанавливается крыльчатка вентилятора охлаждения. Во время работы двигателя она вращается и прогоняет воздух вдоль рёбер, забирая тепло от статора.

Короткозамкнутый и фазный ротор

Различают два типа асинхронных двигателей — с короткозамкнутым и с фазным ротором.

Короткозамкнутый ротор или ротор типа «Беличья клетка» представляет собой набор медных или алюминиевых стержней (2) соединенных (замкнутых) между собой кольцом (3). Стержни впаиваются или заливаются в сердечник (1). Беличьей клеткой его называют из-за внешней схожести, что вы и можете наблюдать в левой части следующей иллюстрации.

Фазный ротор отличается конструкцией, на нём расположена полноценная трёхфазная обмотка, зачастую её катушки соединены по схеме «звезды», то есть их концы соединяются в одной точке, а начала катушек соединяются с токопроводящими кольцами. С помощью щеточного узла образуется скользящий контакт с кольцами. Он, в свою очередь, состоит из щёток и щеткодержателей.

Читайте также:  В чем разница между двигателями уаз и волга

Фазный ротор используют для плавного пуска или регулировки момента на валу посредством изменения величины скольжения двигателя за счет изменения активного сопротивления обмотки ротора. Для этого к выводам щеток подсоединяется регулировочный реостат или набор мощных резисторов (для ступенчатой регулировки). Если сказать кратко, то в двигателе с фазным ротором на обмотку ротора не подают ток, как в синхронном двигателе, например, а, наоборот, к ним подключают сопротивления в качестве нагрузки.

Такие двигатели зачастую используются в грузоподъемных механизмах — кранах или лифтах. Двигатели с короткозамкнутым ротором используются везде: в вентиляции, в станках, и в грузоподъёмных механизмах, для привода насосов и задвижек и т.д.

Схема соединения обмоток статора

Так как в статоре односкоростного асинхронного двигателя расположено три обмотки, то для подключения к трёхфазной сети их необходимо как-то соединить. Как и в любой трёхфазной цепи различают две схемы соединения:

1. «Звезда». Концы обмоток соединяются вместе, напряжение подводится к их началам.

2. «Треугольник». Начало следующей обмотки соединяется с концом предыдущей.

Концы обмоток выводятся в клеммную коробку, которую еще называют «брно» или «борно» (мне не удалось найти правильного названия, а в словаре указаны оба варианта). В зависимости от типа и конструкции двигателя в «борно» может быть выведено 3 или 6 проводов. Если выведено 3 провода – то обмотки соединены «с завода» по определенной схеме, а если 6, то вы можете выбрать схему подключения исходя из напряжения питающей сети.

В зависимости от года производства и производителя электродвигателя могут применяться такие обозначения выводов обмоток, как приведены в таблице ниже.

Концы обмоток на клеммнике расположены таким образом, чтобы с помощью одного комплекта из трёх перемычек можно было соединить обмотки по нужной схеме. Для соединения по схеме звезды перемычки устанавливают в ряд на концы обмоток, а для треугольника – параллельно друг другу соединяя «верхние» и «нижние» клеммы. Для этого начала и концы обмоток смещены друг относительно друга, что вы увидите на следующей иллюстрации.

Напряжение и схема подключения

Как отмечалось выше, схему соединения обмоток выбирают исходя из доступного линейного напряжения в трёхфазной сети. Наиболее распространенное напряжение в РФ это 380/220. Допустим, что у нас есть двигатель, шильдик которого выглядит, как показано на фотографии:

Здесь мы видим обозначение «треугольник/звезда» и напряжения «220/380В» — это значит, что если линейное напряжение в сети 380 – использовать «звезду», как зачастую и делают. Но если линейное напряжение в трёхфазной сети равно 220В, то нужно подключать этот двигатель по схеме «треугольник» (такое встречается и сегодня на старых предприятиях или отдельных участках электросети с напряжениями 220/127 вольт).

Также на эти цифры обращают внимание, когда двигатель подключают к однофазной сети, хоть через фазосдвигающий конденсатор, хоть через частотный преобразователь с однофазным входом и трёхфазным выходом, всегда выбирают ту схему обмоток, которая рассчитана на подключение к сети 220В.

Порой попадаются и старые электродвигатели, в которых обмотки рассчитаны на номинальные напряжения 127/220 и они не предназначены для прямого включения в трёхфазную электросеть с линейным напряжением 380В. Их можно подключать только к однофазной сети через конденсатор или частотник, как было отмечено выше, но в этом случае обмотки уже нужно соединять «звездой».

На предприятиях часто используются мощные электродвигатели, в которых наоборот, схема «треугольник» рассчитана на питание напряжением 380В, а звезда 660В (тогда на шильдике указывается 380/660). Такие двигатели, зачастую, используются, чтобы снизить пусковые токи при пуске, посредством переключения обмоток со схемы «звезда» на схему «треугольник», так как это дешевле, чем использовать частотник или устройства плавного пуска в этих же целях.

Обращайте внимание на то, что написано на шильдике. Неправильное подключение двигателя опасно его преждевременной смертью.

Заключение

Асинхронные двигатели нашли широчайшее применение практически во всех сферах жизнедеятельности человека. Такая популярность обусловлена простотой конструкции и, как следствие, долгим сроком службы. В асинхронном двигателе с короткозамкнутым ротором обслуживания требуют только подшипники. При надлежащей эксплуатации в номинальных для конкретной серии режимах работы, а также соблюдении требований по климатическим условиям и условиям окружающей среды — эти двигатели служат десятилетиями.

Источник

Принцип работы асинхронного двигателя

Электродвигатель предназначен для преобразования, с малыми потерями, электрическую энергию в механическую.

Строение двигателя

Основные элементы электродвигателя это – статор, ротор, их обмотки и магнитопровод.

Преобразование электрической энергии в механическую происходит во вращающейся части мотора — роторе.

У двигателя переменного тока, ротор получает энергию не только за счет магнитного поля, но и при помощи индукции. Таким образом, они называются асинхронными двигателями. Это можно сравнить с вторичной обмоткой трансформатора. Эти асинхронные двигатели еще называют вращающимися трансформаторами. Чаще всего используется модели рассчитанные на трех фазное включение.

Конструкция асинхронного двигателя

Направление вращения электродвигателя задается правилом левой руки буравчика: оно демонстрирует связь между магнитным полем и проводником.

Второй очень важный закон – Фарадея:

  1. ЭДС наводиться в обмотке, но электромагнитный поток меняется во временем.
  2. Величина наведенной ЭДС прямо пропорциональна скорости изменения электрического потока.
  3. Направление ЭДС противодействует току.

Принцип действия

При подаче напряжения на неподвижные обмотки статора, оно создает магнитное в статора. Если подается напряжение переменного тока, то магнитный поток, созданный им, изменяется. Так статор производит изменение магнитного поля, и ротор получает магнитные потоки.

Таким образом, ротор электродвигателя принимает эти поток статора и, следовательно, вращается. Это основной принцип работы и скольжения в асинхронных машинах. Из вышеизложенного следует отметить, что магнитный поток статора (и его напряжение) должно быть равно переменному току для вращения ротора, так что асинхронная машина может работать только от сети переменного тока.

Принцип работы асинхронного двигателя

Когда такие двигатели действуют в качестве генератора, они будет генерировать непосредственно переменный ток. В случае такой работы, ротор вращается с помощью внешних средств скажем, турбины. Если ротор имеет некоторый остаточный магнетизм, то есть некоторые магнитные свойства, которые сохраняет по типу магнита внутри материала, то ротор создает переменный поток в стационарной обмотке статора. Так что это обмотки статора будут получать наведенное напряжение по принципу индукции.

Индукционные генераторы используются в небольших магазинах и домашних хозяйствах, чтобы обеспечить дополнительную поддержку питания и являются наименее дорогостоящими из-за легкого монтажа. В последнее время они широко используется людьми в тех странах, где электрические машины теряют мощность из-за постоянных перепадов напряжения в питающей электросети. Большую часть времени, ротор вращается при помощи небольшого дизельного двигателя соединенного с асинхронным генератором переменного напряжения.

Как вращается ротор

Вращающийся магнитный поток проходит через воздушный зазор между статором, ротором и обмоткой неподвижных проводников в роторе. Этот вращающийся поток, создает напряжение в проводниках ротора, тем самым заставляя наводиться в них ЭДС. В соответствии с законом Фарадея электромагнитной индукции, именно это относительное движение между вращающимся магнитным потоком и неподвижными обмотками ротора, которые возбуждает ЭДС, и является основой вращения.

Читайте также:  Какое масло заливать в двигатель тойота таун айс

Двигатель с короткозамкнутым ротором, в котором проводники ротора образовывают замкнутую цепь, в следствии чего возникает ЭДС наводящая ток в нем, направление задается законом Ленса, и является таким, чтобы противодействовать причине его возникновения. Относительное движение ротора между вращающимся магнитным потоком и неподвижным проводником и является его действием к вращению. Таким образом, чтобы уменьшить относительную скорость, ротор начинает вращаться в том же направлении, что и вращающийся поток на обмотках статора, пытаясь поймать его. Частота наведенной на него ЭДС такая же, как частота питания.

Гребневые асинхронные двигатели

Когда напряжение питания низкое, возбуждение обмоток короткозамкнутого ротора не происходит. Это обусловлено тем что, когда число зубцов статора и число зубьев ротора равное, таким образом вызывая магнитную фиксацию между статором и ротором. Этот физический контакт иначе называется зубо-блокировкой или магнитной блокировкой. Данная проблема может быть преодолена путем увеличения количества пазов ротора или статора.

Подключение

Асинхронный двигатель можно остановить, просто поменяв местами любые два из выводов статора. Это используется во время чрезвычайных ситуаций. После он изменяет направление вращающегося потока, который производит вращающий момент, тем самым вызывая разрыв питания на роторе. Это называется противофазным торможением.

Видео: Как работает асинхронный двигатель

Для того чтобы этого не происходило в однофазном асинхронном двигателе, необходимо использование конденсаторного устройства.

Его нужно подключить к пусковой обмотке, но предварительно обязательно проводится его расчет.

Формула, из которой следует, что электрические машины переменного тока двухфазного или однофазного типа должны снабжаться конденсаторами с мощностью, равной самой мощности двигателя.

QC = Uс I2 = U2 I2 / sin2

Схема: Подключение асинхронного двигателя

Аналогия с муфтой

Рассматривая принцип действия асинхронного электродвигателя, используемого в промышленных машинах, и его технические характеристики, нужно сказать про вращающуюся муфту механического сцепления . Крутящий момент на валу привода должен равняться крутящему моменту на ведомом валу. Кроме того, следует подчеркнуть, что эти два момента являются одним и тем же, поскольку крутящий момент линейного преобразователя вызывается трением между дисков внутри самой муфты.

Электромагнитная муфта сцепления

Похожий принцип действия и у тягового двигателя с фазным ротором. Система такого мотора состоит из восьми полюсов (из которых 4 – основные, а 4 – добавочные), и остовы. На основных полюсах расположены медные катушки. Вращение такого механизма обязано зубчатой передаче, которая получает крутящий момент от вала якоря, так же называемого сердечником. Включение в сеть, производится четырьмя гибкими кабелями. Основное назначение многополюсного электродвигателя – приведение в движение тяжелой техники: тепловозы, тракторы, комбайны и в некоторых случаях, станки.

Достоинства и недостатки

Устройство асинхронного двигателя является практически универсальным, но так же, у данного механизма есть свои плюсы и минусы.

Преимущества асинхронных двигателей переменного тока:

  1. Конструкция простой формы.
  2. Низкая стоимость производства.
  3. Надежная и практичная в обращении конструкция.
  4. Не прихотлив в эксплуатации.
  5. Простая схема управления

Эффективность этих двигателей очень высока, так как нет потерь на трение, и относительно высокий коэффициент мощности.

Недостатки асинхронных двигателей переменного тока:

  1. Не возможен контроль скорости без потерь мощности.
  2. Если увеличивается нагрузка – уменьшается момент.
  3. Относительно небольшой пусковой момент.

Трехфазный асинхронный двигатель

Трехфазный асинхронный электродвигатель — это асинхронный электродвигатель, который имеет трехфазную обмотку статора.

Трехфазный асинхронный двигатель с короткозамкнутым ротором

Асинхронный двигатель с короткозамкнутым ротором — это асинхронный электродвигатель, у которого ротор выполнен с короткозамкнутой обмоткой в виде беличьей клетки [1].

Конструкция асинхронного электродвигателя

Трехфазный асинхронный электродвигатель, как и любой электродвигатель, состоит из двух основных частей — статора и ротора. Статор — неподвижная часть, ротор — вращающаяся часть. Ротор размещается внутри статора. Между ротором и статором имеется небольшое расстояние, называемое воздушным зазором, обычно 0,5-2 мм.

Статор асинхронного двигателя Ротор асинхронного двигателя

Статор состоит из корпуса и сердечника с обмоткой. Сердечник статора собирается из тонколистовой технической стали толщиной обычно 0,5 мм, покрытой изоляционным лаком. Шихтованная конструкция сердечника способствует значительному снижению вихревых токов, возникающих в процессе перемагничивания сердечника вращающимся магнитным полем. Обмотки статора располагаются в пазах сердечника.

Корпус и сердечник статора асинхронного электродвигателя Конструкция шихтованного сердечника асинхронного двигателя

Ротор состоит из сердечника с короткозамкнутой обмоткой и вала. Сердечник ротора тоже имеет шихтованную конструкцию. При этом листы ротора не покрыты лаком, так как ток имеет небольшую частоту и оксидной пленки достаточно для ограничения вихревых токов.

Принцип работы. Вращающееся магнитное поле

Принцип действия трехфазного асинхронного электродвигателя основан на способности трехфазной обмотки при включении ее в сеть трехфазного тока создавать вращающееся магнитное поле.

Вращающееся магнитное поле — это основная концепция электрических двигателей и генераторов.

ЗагрузкаВращающееся магнитное поле асинхронного электродвигателя

Частота вращения этого поля, или синхронная частота вращения прямо пропорциональна частоте переменного тока f1 и обратно пропорциональна числу пар полюсов р трехфазной обмотки.

, где n1 – частота вращения магнитного поля статора, об/мин, f1 – частота переменного тока, Гц, p – число пар полюсов

Концепция вращающегося магнитного поля

Чтобы понять феномен вращающегося магнитного поля лучше, рассмотрим упрощенную трехфазную обмотку с тремя витками. Ток текущий по проводнику создает магнитное поле вокруг него. На рисунке ниже показано поле создаваемое трехфазным переменным током в конкретный момент времени

ЗагрузкаМагнитное поле прямого проводника с постоянным током Магнитное поле создаваемое обмоткой

Составляющие переменного тока будут изменяться со временем, в результате чего будет изменяться создаваемое ими магнитное поле. При этом результирующее магнитное поле трехфазной обмотки будет принимать разную ориентацию, сохраняя при этом одинаковую амплитуду.

Магнитное поле создаваемое трехфазным током в разный момент времени Ток протекающий в витках электродвигателя (сдвиг 60°)ЗагрузкаВращающееся магнитное поле

Действие вращающегося магнитного поля на замкнутый виток

Теперь разместим замкнутый проводник внутри вращающегося магнитного поля. По закону электромагнитной индукции изменяющееся магнитное поле приведет к возникновению электродвижущей силы (ЭДС) в проводнике. В свою очередь ЭДС вызовет ток в проводнике. Таким образом, в магнитном поле будет находиться замкнутый проводник с током, на который согласно закону Ампера будет действовать сила, в результате чего контур начнет вращаться.

Влияние вращающегося магнитного поля на замкнутый проводник с током

Короткозамкнутый ротор асинхронного двигателя

По этому принципу также работает асинхронный электродвигатель. Вместо рамки с током внутри асинхронного двигателя находится короткозамкнутый ротор по конструкции напоминающий беличье колесо. Короткозамкнутый ротор состоит из стержней накоротко замкнутых с торцов кольцами.

Короткозамкнутый ротор «беличья клетка» наиболее широко используемый в асинхронных электродвигателях (показан без вала и сердечника)

Трехфазный переменный ток, проходя по обмоткам статора, создает вращающееся магнитное поле. Таким образом, также как было описано ранее, в стержнях ротора будет индуцироваться ток, в результате чего ротор начнет вращаться. На рисунке ниже Вы можете заметить различие между индуцируемыми токами в стержнях. Это происходит из-за того что величина изменения магнитного поля отличается в разных парах стержней, из-за их разного расположения относительно поля. Изменение тока в стержнях будет изменяться со временем.

Вращающееся магнитное поле пронизывающее короткозамкнутый ротор Магнитный момент действующий на ротор

Вы также можете заметить, что стержни ротора наклонены относительно оси вращения. Это делается для того чтобы уменьшить высшие гармоники ЭДС и избавиться от пульсации момента. Если стержни были бы направлены вдоль оси вращения, то в них возникало бы пульсирующее магнитное поле из-за того, что магнитное сопротивление обмотки значительно выше магнитного сопротивления зубцов статора.

Читайте также:  Пежо 308 двигатель тарахтит как

Скольжение асинхронного двигателя. Скорость вращения ротора

Отличительный признак асинхронного двигателя состоит в том, что частота вращения ротора n2 меньше синхронной частоты вращения магнитного поля статора n1.

Объясняется это тем, что ЭДС в стержнях обмотки ротора индуцируется только при неравенстве частот вращения n2 , где s – скольжение асинхронного электродвигателя, n1 – частота вращения магнитного поля статора, об/мин, n2 – частота вращения ротора, об/мин,

Рассмотрим случай когда частота вращения ротора будет совпадать с частотой вращения магнитного поля статора. В таком случае относительное магнитное поле ротора будет постоянным, таким образом в стержнях ротора не будет создаваться ЭДС, а следовательно и ток. Это значит что сила действующая на ротор будет равна нулю. Таким образом ротор будет замедляться. После чего на стержни ротора опять будет действовать переменное магнитное поле, таким образом будет расти индуцируемый ток и сила. В реальности же ротор асинхронного электродвигателя никогда не достигнет скорости вращения магнитного поля статора. Ротор будет вращаться с некоторой скоростью которая немного меньше синхронной скорости.

Скольжение асинхронного двигателя может изменяться в диапазоне от 0 до 1, т. е. 0—100%. Если s

0, то это соответствует режиму холостого хода, когда ротор двигателя практически не испытывает противодействующего момента; если s=1 — режиму короткого замыкания, при котором ротор двигателя неподвижен (n2 = 0). Скольжение зависит от механической нагрузки на валу двигателя и с ее ростом увеличивается.

Скольжение, соответствующее номинальной нагрузке двигателя, называется номинальным скольжением. Для асинхронных двигателей малой и средней мощности номинальное скольжение изменяется в пределах от 8% до 2%.

Преобразование энергии

Асинхронный двигатель преобразует электрическую энергию подаваемую на обмотки статора, в механическую (вращение вала ротора). Но входная и выходная мощность не равны друг другу так как во время преобразования происходят потери энергии: на трение, нагрев, вихревые токи и потери на гистерезисе. Это энергия рассеивается как тепло. Поэтому асинхронный электродвигатель имеет вентилятор для охлаждения.

Параметры асинхронного двигателя

При подборе таких машин, а также при дальнейшей их эксплуатации необходимо учитывать характеристики асинхронного двигателя. Они бывают энергетические — это коэффициент полезного действия, коэффициент мощности. Важно учитывать и механические показатели. Основным из них считается зависимость между скоростью вращения вала и рабочим усилием, прикладываемым к нему. Существуют ещё пусковые характеристики. Они определяют пусковой, минимальный и максимальный моменты и их соотношение. Важно также знать, каков пусковой ток асинхронного двигателя. Для наиболее эффективного использования двигателя необходимо учитывать все эти параметры.

Нельзя оставить без внимания вопрос энергосбережения. В последнее время он рассматривается не только с позиции уменьшения эксплуатационных затрат. Экономичность электродвигателей снижает уровень экологических проблем, связанных с производством электроэнергии.

Перед производителями постоянно ставятся задачи разработки и выпуска энергосберегающих двигателей, повышения эксплуатационного ресурса, уменьшения шумового уровня.

Улучшить энергосберегающие показатели можно путём снижения потерь при эксплуатации. А они напрямую зависят от рабочей температуры машины. Кроме того, совершенствование этой характеристики неизбежно приведёт к увеличению срока эксплуатации двигателя.

Снизить температуру обмоток можно, применяя вентилятор наружного обдува, закреплённый на хвостовике вала ротора. Но это приводит к неизбежному повышению шума, производимого двигателем при работе. Особенно ощутим этот показатель при высокой скорости вращения ротора.

Таким образом, видно, что асинхронный двигатель имеет один существенный недостаток. Он не способен поддерживать постоянную частоту вращения вала при возрастающих нагрузках. Зато такой двигатель имеет множество преимуществ по сравнению с образцами электродвигателей других конструкций.

Во-первых, он имеет надёжную конструкцию. Работа асинхронного двигателя не вызывает никаких сложностей при его использовании.

Во-вторых, асинхронный двигатель экономичен в производстве и эксплуатации.

В-третьих, эта машина универсальна. Имеется возможность её использования в любых устройствах, которые не требуют точного поддержания частоты вращения вала якоря.

В-четвёртых, двигатель с асинхронным принципом действия востребован и в быту, получая питание только от одной фазы.

Режимы работы

Электродвигатель асинхронного типа универсальный механизм и по продолжительности работы имеет несколько режимов:

  • Продолжительный;
  • Кратковременный;
  • Периодический;
  • Повторно-кратковременный;
  • Особый.

Продолжительный режим – основной режим работы асинхронных устройств, который характеризуется постоянной работой электродвигателя без отключений с неизменной нагрузкой. Такой режим работы самый распространенный, используется на промышленных предприятиях повсеместно.

Кратковременный режим – работает до достижения постоянной нагрузки определенное время (от 10 до 90 минут), не успевая максимально разогреться. После этого отключается. Такой режим используют при подаче рабочих веществ (воду, нефть, газ) и прочих ситуациях.

Периодический режим – продолжительность работы имеет определенное значение и по завершении цикла работ отключается. Режим работы пуск-работа-остановка. При этом он может отключаться на время, за которое не успевает остыть до внешних температур и включаться заново.

Повторно-кратковременный режим – двигатель не нагревается максимально, но и не успевает остыть до внешней температуры. Применяется в лифтах, эскалаторах и прочих устройствах.

Особый режим – продолжительность и период включения произвольный.

В электротехнике существует принцип обратимости электрических машин — это означает, что устройство может, как преобразовывать электрическую энергию в механическую, так и совершать обратные действия.

Асинхронные электродвигатели тоже соответствуют этому принципу и имеют двигательный и генераторный режим работы.

Двигательный режим – основной режим работы асинхронного электродвигателя. При подаче напряжения на обмотки возникает электромагнитный вращающий момент, увлекающий за собой ротор с валом и, таким образом, вал начинает вращаться, двигатель выходит на постоянную частоту вращения, совершая полезную работу.

Генераторный режим – основан на принципе возбуждения электрического тока в обмотках двигателя при вращении ротора. Если вращать ротор двигателя механическим способом, то на обмотках статора образуется электродвижущая сила, при наличии конденсатора в обмотках возникает емкостный ток. Если емкость конденсатора будет определенного значения, зависящего от характеристик двигателя, то произойдет самовозбуждение генератора и возникнет трехфазная система напряжений. Таким образом короткозамкнутый электродвигатель будет работать как генератор.

Регулирование частоты вращения асинхронных двигателей

Для регулирования частоты вращения асинхронных электродвигателей и управления режимами их работы существуют следующие способы:

  1. Частотный – при изменении частоты тока в электрической сети изменяется частота вращения электрического двигателя. Для такого способа применяют устройство, которое называется частотный преобразователь;
  2. Реостатный – при изменении сопротивления реостата в роторе, изменяется частота вращения. Такой способ увеличивает пусковой момент и критическое скольжение;
  3. Импульсный – способ управления, при котором на двигатель подается напряжение специального вида.
  4. Переключение обмоток по время работы электрического двигателя со схемы «звезда» на схему «треугольник», что снижает пусковые токи;
  5. Управление с изменения пар полюсов для короткозамкнутых роторов;
  6. Подключение индуктивного сопротивления для двигателей с фазным ротором.

С развитием электронных систем, управление различными электродвигателями асинхронного типа становится все более эффективным и точным. Такие двигатели используются в мире повсеместно, разнообразие задач, выполняемых такими механизмами, с каждым днем растет, и потребность в них не уменьшается.

Источник