Асинхронный двигатель принцип действия механическая характеристика

Механическая характеристика асинхронного двигателя

Механическая характеристика асинхронного двигателя это зависимость частоты вращения вала двигателя от момента на его валу n2=f(M) или S=f(M). Механическая характеристика изображена на рис. 13. На характеристике можно выделить четыре характерные точки:

1 Точка идеального холостого хода. В ней М=0, S=0;

2 Точка номинального режима работы. В ней М=МН, S=SН. Значения n2Н и МН можно определить по каталожным данным двигателя;

3 Точка максимального или критического момента. В ней М=Мm, S=SK. Данная точка характеризует перегрузочную способность двигателя.

Рис. 13

В каталогах для определения параметров данной точки приводится величина кратности критического момента двигателя:

.

Величина кратности позволяет определить максимально возможный момент двигателя.

4. Точка пуска. В ней М=МП, S=1. Данная точка характеризует пусковые свойства двигателя. В каталогах для определения пусковых свойств приводится величина кратности пускового момента двигателя:

.

В каталогах приводится также коэффициент кратности пускового тока

который позволяет определить величину тока двигателя в момент пуска.

Синхронные машины

Синхронные машины как двигатели применяются обычно в приводах большой мощности (более 600 кВт) или как микродвигатели, где требуется строгое постоянство скорости: электрочасы, самопишущие приборы и др. Наибольшее распространение получил генераторный режим работы синхронных машин, и почти вся электроэнергия вырабатывается синхронными генераторами, часто называемыми турбогенераторами. Синхронные генераторы на напряжение до 1000 В применяются в агрегатах для автономных систем электроснабжения. Агрегаты с этими генераторами могут быть стационарными и передвижными. Большинство агрегатов применяются с дизельными двигателями, но приводом их могут быть газовые турбины, электродвигатели и бензиновые двигатели.

Схема синхронной машины показана на рис. 14. Синхронная машина отличается от асинхронной тем, что ток в обмотке ротора появляется не при вращении ее в магнитном поле статора, а подводится к ней от постороннего источника постоянного тока. Статор синхронной машины выполнен так же, как и асинхронной, и на нем обычно расположена трехфазная обмотка. Обмотка ротора в синхронной машине создает магнитный поток возбуждения и называется обмоткой возбуждения. Вращающаяся обмотка ротора соединяется с внешней цепью источника постоянного тока с помощью контактных колец и щеток. Обмотка якоря в машине (генераторе) — это обмотка, в которой индуцируется ЭДС и к которой присоединяется нагрузка.

Рис. 14. Схема синхронной машины:

В — обмотка возбуждения, Uв — напряжение В цепи возбуждения

Результирующий магнитный поток создается совместным действием обмоток возбуждения и статора и вращается с той же частотой, что и ротор, поэтому такие машины называются синхронными.

В схеме на рис. 14 статор является якорем, а ротор — индуктором (возбудителем), но может быть и обращенная схема, в которой статор — индуктор, а ротор — якорь как у машины постоянного тока.

В машине с неподвижным якорем применяются две разновидности ротора: явнополюсный ротор имеет явно выраженные полюсы, неявнополюсный ротор не имеет явно выраженных полюсов.

Рис. 15.Принцип устройства явнополюсной (а) и неявнополюсной (б) синхронной машины

/ — статор (якорь), 2 — ротор (индуктор), 3 — обмотка возбуждения

Постоянный ток в обмотку возбуждения синхронной машины может подаваться от специального генератора постоянного тока, установленного на валу машины и называемого возбудителем, или от сети через полупроводниковый выпрямитель.

При вращении ротора с частотой n2 его магнитное поле возбуждения наводит в статоре ЭДС E1, частота которой

Читайте также:  Масло моторное shell helix ultra 5w40 для каких двигателей

Из формулы следует, что чем больше число пар полюсов синхронной машины p*, тем меньше должна быть ее скорость вращения п для получения заданной частоты fi.

Поэтому синхронные генераторы обычно выпускают явнополюсными с большим числом пар полюсов.

Синхронный двигатель несколько сложнее, чем асинхронный, кроме того, требуются два вида тока – переменный и постоянный. Такие двигатели обычно выпускаются большой мощности и имеют большие габариты. Синхронные двигатели имеют проблемы пуска, обусловленные введением ротора в синхронный режим при запуске двигателя. Возможны следующие способы пуска синхронного двигателя: асинхронный пуск на полное напряжение сети и пуск на пониженное напряжение через автотрансформатор. При асинхронном пуске в момент включения (подключения обмоток статора к системе трехфазного тока) обмотки ротора не соединены с источником постоянного тока, а замкнуты накоротко. Двигатель при этом становится по принципу действия асинхронным. После разгона ротора его замкнутые обмотки размыкаются и подключаются к источнику постоянного тока.

Вместе с тем синхронный двигатель обладает рядом преимуществ, что позволяет применять его в ряде случаев вместо асинхронного.

1. Основным достоинством синхронного электродвигателя является возможность получения оптимального режима по реактивной энергии, который осуществляется путем автоматического регулирования тока возбуждения двигателя. Синхронный двигатель может работать, не потребляя и не отдавая реактивной энергии в сеть, при коэффициенте мощности (cos фи) равным единице. Если для предприятия необходима выработка реактивной энергии, то синхронный электродвигатель, работая с перевозбуждением, может отдавать ее в сеть.

2. Синхронные электродвигатели менее чувствительны к колебаниям напряжения сети, чем асинхронные электродвигатели. Их максимальный момент пропорционален напряжению сети, в то время как критический момент асинхронного электродвигателя пропорционален квадрату напряжения.

3. Синхронные электродвигатели имеют высокую перегрузочную способность. Кроме того, перегрузочная способность синхронного двигателя может быть автоматически увеличена за счет повышения тока возбуждения, например, при резком кратковременном повышении нагрузки на валу двигателя.

4. Скорость вращения синхронного двигателя остается неизменной при любой нагрузке на валу в пределах его перегрузочной способности.

Механическая характеристика синхронного электродвигателя.

Источник

Механическая характеристика асинхронного двигателя

Механической характеристикой двигателя называется зависимость частоты вращения ротора от момента на валу n = f (M2) . Так как при нагрузке момент холостого хода мал, то M2 ≈ M и механическая характеристика представляется зависимостью n = f (M) . Если учесть взаимосвязь s = (n1 — n) / n1 , то механическую характеристику можно получить, представив ее графическую зависимость в координатах n и М (рис. 1).

Рис. 1. Механическая характеристика асинхронного двигателя

Естественная механическая характеристика асинхронного двигателя соответствует основной (паспортной) схеме его включения и номинальным параметрам питающего напряжения. Искусственные характеристики получаются, если включены какие-либо дополнительные элементы: резисторы, реакторы, конденсаторы. При питании двигателя не номинальным напряжением характеристики также отличаются от естественной механической характеристики.

Механические характеристики являются очень удобным и полезным инструментом при анализе статических и динамических режимов электропривода.

Пример расчета механической характеристики асинхронного двигателя

Трехфазный асинхронный двигатель с короткозамкнутым ротором питается от сети с напряжением = 380 В при = 50 Гц. Параметры двигателя: P н= 14 кВт, n н= 960 об/мин, cos φн = 0,85, ηн = 0,88, кратность максимального момента k м= 1,8.

Определить: номинальный ток в фазе обмотки статора, число пар полюсов, номинальное скольжение, номинальный момент на валу, критический момент, критическое скольжение и построить механическую характеристику двигателя.

Решение. Номинальная мощность, потребляемая из сети

P1 н = P н / ηн = 14 / 0,88 = 16 кВт.

Номинальный ток, потребляемый из сети

Число пар полюсов

p = 60 f / n1 = 60 х 50 / 1000 = 3,

где n1 = 1000 – синхронная частота вращения, ближайшая к номинальной частоте n н= 960 об/мин.

Читайте также:  Какой двигатель установлен на bmw x5

s н = (n1 — n н ) / n1 = (1000 — 960 ) / 1000 = 0,04

Номинальный момент на валу двигателя

Мк = k м х Мн = 1,8 х 139,3 = 250,7 Н•м.

Критическое скольжение находим подставив М = Мн, s = s н и Мк / Мн = k м.

Для построения механической характеристики двигателя с помощью n = (n1 — s) определим характерные точки: точка холостого хода s = 0 , n = 1000 об/мин, М = 0, точка номинального режима s н = 0,04, n н = 960 об/мин, Мн = 139,3 Н•м и точка критического режима s к = 0,132, n к = 868 об/мин, Мк =250,7 Н•м.

Для точки пускового режима s п = 1, n = 0 находим

По полученным данным строят механическую характеристику двигателя. Для более точного построения механической характеристики следует увеличить число расчетных точек и для заданных скольжений определить моменты и частоту вращения.

Источник

Устройство, виды и принцип действия асинхронных электродвигателей

Наука в области электричества в XIX и XX веках стремительно развивалась, что привело к созданию электрических асинхронных двигателей. С помощью таких устройств развитие промышленной индустрии шагнуло далеко вперед и теперь невозможно представить заводы и фабрики без силовых машин с использованием асинхронных электродвигателей.

История появления

История создания асинхронного электродвигателя начинается в 1888 году, когда Никола Тесла запатентовал схему электродвигателя, в этом же году другой ученый в области электротехники Галлилео Феррарис опубликовал статью о теоретических аспектах работы асинхронной машины.

В 1889 году российский физик Михаил Осипович Доливо-Добровольский получил в Германии патент на асинхронный трехфазный электрический двигатель.

Все эти изобретения позволили усовершенствовать электрические машины и привели к тому, что в промышленность стали массово применяться электрические машины, которые значительно ускорили все технологические процессы на производстве, повысили эффективность работы и снизили её трудоемкость.

В настоящий момент самый распространенный электродвигатель, эксплуатируемый в промышленности, является прототипом электрической машины, созданной Доливо-Добровольским.

Устройство и принцип действия асинхронного двигателя

Главными компонентами асинхронного электродвигателя являются статор и ротор, которые отделены друг от друга воздушным зазором. Активную работу в двигателе выполняют обмотки и сердечник ротора.

Под асинхронностью двигателя понимают отличие частоты вращения ротора от частоты вращения электромагнитного поля.

Статор – это неподвижная часть двигателя, сердечник которой выполняется из электротехнической стали и монтируется в станину. Станина выполняется литым способом из материала, который не магнитится (чугун, алюминий). Обмотки статора являются трехфазной системой, в которой провода уложены в пазы с углом отклонения 120 градусов. Фазы обмоток стандартно подключают к сети по схемам «звезда» или «треугольник».

Ротор – это подвижная часть двигателя. Роторы асинхронных электродвигателей бывают двух видов: с короткозамкнутым и фазным роторами. Данные виды отличаются между собой конструкциями обмотки ротора.

Асинхронный двигатель с короткозамкнутым ротором

Такой тип электрической машины был впервые запатентован М.О. Доливо-Добровольским и в народе называется «беличье колесо» из-за внешнего вида конструкции. Короткозамкнутая обмотка ротора состоит из накоротко замкнутых с помощью колец стержней из меди (алюминия, латуни) и вставленные в пазы обмотки сердечника ротора. Такой тип ротора не имеет подвижных контактов, поэтому такие двигатели очень надежны и долговечны при эксплуатации.

Асинхронный двигатель с фазным ротором

Такое устройство позволяет регулировать скорость работы в широком диапазоне. Фазный ротор представляет собой трехфазную обмотку, которая соединяется по схемам «звезда» или треугольник. В таких электродвигателях в конструкции имеются специальные щетки, с помощью которых можно регулировать скорость движения ротора. Если в механизм такого двигателя добавить специальный реостат, то при пуске двигателя уменьшится активное сопротивление и тем самым уменьшатся пусковые токи, которые пагубно влияют на электрическую сеть и само устройство.

Читайте также:  Как снизить расход топлива на газ 3110 с 406 двигателем

Принцип действия

При подаче электрического тока на обмотки статора возникает магнитный поток. Так как фазы смещены относительно друг друга на 120 градусов, то из-за этого поток в обмотках вращается. Если ротор короткозамкнутый, то при таком вращении в роторе появляется ток, который создает электромагнитное поле. Взаимодействуя друг с другом, магнитные поля ротора и статора заставляют ротор электродвигателя вращаться. В случае, если ротор фазный, то напряжение подается на статор и ротор одновременно, в каждом механизме появляется магнитное поле, они взаимодействуют друг с другом и вращают ротор.

Достоинства асинхронных электродвигателей

С короткозамкнутым ротором С фазным ротором
1. Простое устройство и схема запуска 1. Небольшой пусковой ток
2. Низкая цена изготовления 2. Возможность регулировать скорость вращения
3. С увеличением нагрузки скорость вала не меняется 3. Работа с небольшими перегрузками без изменения частоты вращения
4. Способен переносить перегрузки краткие по времени 4. Можно применять автоматический пуск
5. Надежен и долговечен в эксплуатации 5. Имеет большой вращающий момент
6. Подходит для любых условий работы
7. Имеет высокий коэффициент полезного действия

Недостатки асинхронных электродвигателей

С короткозамкнутым ротором С фазным ротором
1. Не регулируется скорость вращения ротора 1. Большие габариты
2. Маленький пусковой момент 2. Коэффициент полезного действия ниже
3. Высокий пусковой ток 3. Частое обслуживание из-за износа щеток
4. Некоторая сложность конструкции и наличие движущихся контактов

Асинхронные электродвигатели являются очень эффективными устройствами с отличными механическими характеристиками, и благодаря этому они являются лидерами по частоте применения.

Режимы работы

Электродвигатель асинхронного типа универсальный механизм и по продолжительности работы имеет несколько режимов:

  • Продолжительный;
  • Кратковременный;
  • Периодический;
  • Повторно-кратковременный;
  • Особый.

Продолжительный режим — основной режим работы асинхронных устройств, который характеризуется постоянной работой электродвигателя без отключений с неизменной нагрузкой. Такой режим работы самый распространенный, используется на промышленных предприятиях повсеместно.

Кратковременный режим – работает до достижения постоянной нагрузки определенное время (от 10 до 90 минут), не успевая максимально разогреться. После этого отключается. Такой режим используют при подаче рабочих веществ (воду, нефть, газ) и прочих ситуациях.

Периодический режим – продолжительность работы имеет определенное значение и по завершении цикла работ отключается. Режим работы пуск-работа-остановка. При этом он может отключаться на время, за которое не успевает остыть до внешних температур и включаться заново.

Повторно-кратковременный режим – двигатель не нагревается максимально, но и не успевает остыть до внешней температуры. Применяется в лифтах, эскалаторах и прочих устройствах.

Особый режим – продолжительность и период включения произвольный.

В электротехнике существует принцип обратимости электрических машин — это означает, что устройство может, как преобразовывать электрическую энергию в механическую, так и совершать обратные действия.

Асинхронные электродвигатели тоже соответствуют этому принципу и имеют двигательный и генераторный режим работы.

Двигательный режим – основной режим работы асинхронного электродвигателя. При подаче напряжения на обмотки возникает электромагнитный вращающий момент, увлекающий за собой ротор с валом и, таким образом, вал начинает вращаться, двигатель выходит на постоянную частоту вращения, совершая полезную работу.

Генераторный режим – основан на принципе возбуждения электрического тока в обмотках двигателя при вращении ротора. Если вращать ротор двигателя механическим способом, то на обмотках статора образуется электродвижущая сила, при наличии конденсатора в обмотках возникает емкостный ток. Если емкость конденсатора будет определенного значения, зависящего от характеристик двигателя, то произойдет самовозбуждение генератора и возникнет трехфазная система напряжений. Таким образом короткозамкнутый электродвигатель будет работать как генератор.

Источник

Adblock
detector