Асинхронному двигателю соответствует механическая характеристика



Механическая характеристика асинхронного двигателя при различных режимах, напряжениях и частотах

Механические характеристики асинхронных двигателей могут быть выражены в виде n=f(M) или n = f ( I ). Однако часто механические характеристики асинхронных двигателей выражаются в виде зависимости M = f ( S), где S — скольжение, S = (nc-n)/nc , где n с — синхронная скорость.

На практике для графического построения механической характеристики пользуются упрощенной формулой, называемой формулой Клосса:

здесь: Мк — критическое (максимальное) значение момента. Этому значению момента отвечает критическое скольжение

Формула Клосса применяется при решении вопросов, связанных с электроприводом, осуществляемым с помощью асинхронного двигателя. Пользуясь формулой Клосса можно построить график механической характеристики по паспортным данным асинхронного двигателя. Для практических расчетов в формуле при определении критического момента перед корнем следует принимать во внимание только знак плюс.

Рис. 1. Асинхронный двигатель: а — принципиальная схема, б — механическая характеристика М=f(S) — естественная в двигательном и генераторном режимах, в — естественная механическая характеристика n=f(М) в двигательном режиме, г — искусственные реостатные механические характеристики, д — механические характеристики для различных напряжений и частот.

Асинхронный двигатель с короткозамкнутым ротором

Как видно из рис. 1, механическая характеристика асинхронного двигателя располагается в I и III квадрантах. Часть кривой в I квадранте соответствует положительному значению скольжения и характеризует двигательный режим работы асинхронного двигателя, а в III квадранте — генераторный режим. Наибольший практический интерес представляет двигательный режим.

График механической характеристики двигательного режима содержит три характерные точки: А, В, С и условно может быть подразделен на два участка: ОВ и ВС (рис. 1, в).

Точка А соответствует номинальному моменту двигателя и определяется по формуле Мн = 9,55 •10 3 • (P н/ n н)

Этому моменту соответствует номинальное скольжение, которое для двигателей общепромышленного применения имеет величину в пределах от 1 до 7%, т. е. Sн=1 — 7%. При этом мелкие двигатели имеют большее скольжение, а крупные — меньшее.

Двигатели с повышенным скольжением , предназначенные для работы с ударной нагрузкой, имеют S н

15%. К ним относятся, например, двигатели единой серии АС.

Точка С на характеристике соответствует величине начального вращающего момента , возникающего на валу двигателя при пуске. Этот момент Мп носит название начального, или пускового. Скольжение при этом равно единице, а скорость — нулю. Величину пускового момента легко определить по данным справочной таблицы, где указывается отношение пускового момента к номинальному Мп/Мн.

Величина пускового момента при постоянных величинах напряжения и частоты тока зависит от активного сопротивления в цепи ротора. При этом вначале с возрастанием активного сопротивления увеличивается величина пускового момента, достигая своего максимума при равенстве активного сопротивления цепи ротора и полного индуктивного сопротивления двигателя. В дальнейшем с возрастанием активного сопротивления ротора величина пускового момента уменьшается, стремясь в пределе к нулю.

Точка В (рис. 1,б и в) соответствует максимальному моменту , который может развивать двигатель на всем диапазоне скоростей от n = 0 до n = n с. Этот момент носит название критического (или опрокидывающего) момента Мк. Критическому моменту соответствует и критическое скольжение Sк. Чем меньше величина критического скольжения Sк, а также величина номинального скольжения S н, тем больше жесткость механической характеристики.

Как пусковой, так и критический моменты определяются через номинальный. Согласно ГОСТ на электрические машины для короткозамкнутого двигателя должно соблюдаться условие Мп/Мн = 0,9 — 1,2, Мк/Мн = 1,65 — 2,5.

Следует иметь в виду, что величина критического момента не зависит от активного сопротивления роторной цепи, в то время как критическое скольжение S к прямо пропорционально этому сопротивлению. Это означает, что с увеличением активного сопротивления роторной цепи величина критического момента остается неизменной, однако максимум кривой момента смещается в сторону возрастающих значений скольжения (рис. 1, г).

Читайте также:  Котел подогрева двигателя что это такое

Величина критического момента прямо пропорциональна квадрату напряжения, подводимого к статору, и обратно пропорциональна квадрату частоты напряжений и частоты тока в статоре.

Если, например, напряжение, подводимое к двигателю, будет равно 85% номинального значения, то величина критического момента при этом составит 0,85 2 = 0,7225 = 72,25% критического момента при номинальном напряжении.

Обратное явление наблюдается при изменении частоты. Если, например, к двигателю, предназначенному для работы с частотой тока f = 60 гц, подвести ток частотой f = 50 гц, то критический момент получит в (60/50) 2 = 1,44 раза большее значение, чем при своей формальной частоте (рис. 1, д).

Критический момент характеризует собой мгновенную перегрузочную способность двигателя, т. е. он показывает, какую мгновенную (на несколько секунд) перегрузку способен перенести двигатель без каких-либо вредных последствий.

Участок механической характеристики от нулевого до максимального (критического) значения (см. рис. 1 , б и в) носит название устойчивой части характеристики , а участок ВС (рис. 1,в) — неустойчивой части .

Объясняется такое деление тем, что на возрастающей части характеристики ОВ с увеличением скольжения, т.е. с уменьшением скорости, растет развиваемый двигателем момент. Это означает, что при увеличении нагрузки, т. е. при возрастании тормозного момента, уменьшается скорость вращения двигателя, а развиваемый им момент увеличивается. При снижении нагрузки, наоборот, скорость возрастает, а момент уменьшается. При изменении нагрузки на всем диапазоне устойчивой части характеристики происходит изменение скорости вращения и момента двигателя.

Двигатель не в состоянии развить момент больше критического, и если тормозной момент окажется больше, двигатель неминуемо должен остановиться. Происходит, как принято говорить, опрокидывание двигателя .

Механическая характеристика при постоянных U и I и отсутствии добавочного сопротивления в цепи ротора называется естественной характеристикой (характеристика короткозамкнутого асинхронного двигателя с фазным ротором без добавочного сопротивления в цепи ротора). Искусственными, или реостатными, характеристиками называются такие, которые соответствуют добавочному сопротивлению в цепи ротора.

Все значения пусковых моментов различны между собой и зависят от активного сопротивления цепи ротора. Одному и тому же номинальному моменту Мн соответствуют скольжения различной величины. С увеличением сопротивления цепи ротора возрастает скольжение и, следовательно, уменьшается скорость вращения двигателя.

Благодаря включению в цепь ротора активного сопротивления механическая характеристика в устойчивой части вытягивается в сторону возрастания скольжения, пропорционально сопротивлению. Это означает, что скорость двигателя начинает сильно меняться в зависимости от нагрузки на валу и характеристика из жесткой делается мягкой.

Источник

Механические характеристики асинхронного двигателя

Лекция 3

Асинхронные двигатели получили в промышленности весьма широкое применение благодаря ряду существенных преимуществ по сравнению с другими типами двигателей. Асинхронный двигатель прост и надежен в эксплуатации, так как не имеет коллектора; асинхронные двигатели дешевле и значительно легче двигателей постоянного тока.

Для вывода уравнения механической характеристики асинхронного двигателя можно воспользоваться упрощенной схемой замещения, приведенной на рис. 3.1, где приняты следующие обозначения:

Uф — первичное фазное напряжение; I1 — фазный ток статора; I / 2 — приведенный ток ротора; X1 и Х’2 первич­ное и вторичное приведенные реактивные сопротивления рассеяния; Rо и Х активное и реактивное сопротивления контура намагничивания; s == (w — w)/w — скольжение двигателя; w = 2pn/60 синхронная угловая скорость двигателя; w = 2pf1/p; R1 и R / 2 первичное и вторичное приведенные активные сопротивления; f1 — частота сети; р — число пар полюсов.

Рис. 3.1 Упрощенная схема замещения асинхронного двигателя.

В соответствии с приведенной схемой замещения можно получить выражение для вторичного тока

(2.1)

Момент асинхронного двигателя может быть определен из выражения потерь Mws = 3 (I / 2) 2 R / 2, откуда

(2.2)

Подставляя значение тока I / 2 в (2.1), получаем:

(2.3)

Кривая момента М = f (s) имеет два максимума: один — в генераторном режиме, другой — в двигательном 1 .

Приравнивая dM/ds = 0, определяем значение критиче­ского скольжения Sg, при котором двигатель развивает максимальный (критический) момент

Читайте также:  Какие датчики в двигатели 406 и на что они влияют

(2.4)

При значительных сопротивлениях роторной цепи максимум момента может оказаться в режиме торможения противовключением.

Подставляя значение Sк в (3.3), находим выражение для максимального момента

(2.5)

Знак «+» в равенствах (2.4) и (2.5) относится к дви­гательному режиму (или торможению противовключением), знак «—» — к генераторному режиму работы параллельно с сетью (при w>w)

Если выражение (2.3) разделить на (2.5) и произвести соответствующие преобразования,

Рис. 3.2 Механические характеристики асинхронного двигателя.

то можно получить:

(2.6)

где Мк максимальный момент двигателя; SК — критическое скольжение, соответствующее макси­мальному моменту; а = R1/R / 2.

Здесь следует подчерк­нуть весьма важное для практики обстоятельство— влияние изменения напря­жения сети на механичес­кие характеристики асинхронного двигателя. Как видно из (3.3), при данном скольжении момент двигателя пропорционален квадрату напряжения, поэтому двигатель этого типа чувствителен к колебаниям напряжения сети.

Критическое скольжение и угловая скорость идеального холостого хода не зависят от напряжения.

На рис. 3.2 приведена механическая характеристика асинхронного двигателя. Ее характерные точки:

1) s = 0; М = 0, при этом скорость двигателя равна синхронной;

2) s = sНОМ ; М = Мном что соответствует номинальной скорости и номинальному моменту;

3) s == sk; M == Ммакс максимальный момент в двига­тельном режиме;

— начальный пуско­вой момент;

5) s = — sK; M=MК.Г. — максимальный момент в ге­нераторном режиме работы параллельно с сетью.

При s> 1,0 двигатель работает в режиме торможения противовключением, при s sк (нерабочая часть характеристики) получится уравнение гиперболы, если вэтом случае пренебречь вторым членам знаменателя в уравнений (3.6), т. е.

Эта часть характеристики практически соответствует лишь пусковым и тормозным режимам.

При малых значениях скольжения (s / 2 в соответствии с (3.1), асимптотически стремясь к некоторому предельному зна­чению, a cos y2 с ростом s уменьшается (на рабочем участке характеристики очень мало), асимптотически стремясь к ну­лю при s ®¥. Поток двигателя также не остается неизмен­ным, уменьшаясь при возрастании тока из-за падения на­пряжения на сопротивлениях обмотки статора. Все это и обусловливает отсутствие пропорциональности между то­ком и моментом двигателя.

Для повышения начального пускового момента и сниже­ния пускового тока применяются двигатели с короткозамкнутым ротором специальных конструкций. Роторы элек­тродвигателей имеют две клетки, расположенные концен­трически, или глубокие павы с высокими и узкими стерж­нями. Сопротивление ротора этих двигателей в пусковой

Рис. 14. Механические характерис­тики асинхронного двигателя с короткозамкнутым ротором с провалом при малых угловых скоростях.

период значительно больше, чем при номинальной скорости, вследствие поверхностного эффекта, обусловленного повышенной частотой тока в роторе при больших скольжениях. Поэтому при переходе к двигателям с глубоким пазом или двойной обмоткой ротора существенно увеличивается кратность пускового момента (увеличивается cos y2 поток) и снижается кратность пускового тока. Правда, в этом случае несколько уменьшаются коэффициент мощности и КПД, соответствующие номинальной нагрузке.

Необходимо отметить, что у двигателей с короткозамкнутым ротором пусковой момент практически не всегда явля­ется наименьшим значением момента в области двигатель­ного режима. Как видно из рис. 14, механическая харак­теристика двигателя с короткозамкнутым ротором иногда при малых угловых скоростях имеет провал, вызванный влиянием высших гармоник зубцовых полей. Это обстоятельство следует учитывать при пуске двигателя под на­грузкой.

У двигателей с фазным ротором начальный пусковой момент увеличивается по мере возрастания до известных пре­делов сопротивления резистора (рис. 12), а пусковой ток при увеличении сопротивления уменьшается. Начальный пусковой момент может быть доведен до максимального момента. С дальнейшим ростом сопротивления роторной цепи увеличение cos y2 компенсирует уменьшения тока ротора и пусковой момент уменьшается.

асинхронного двигателя в тормозных режимах

В § 3.7 были рассмотрены механические характеристики асинхронной машины, работающей в двигательном режиме. Однако асинхронный двигатель может работать и в тормозных режимах: при торможении с отдачей энергии в сеть, при торможении противовключением и при динамическом торможении.

Читайте также:  Сколько весит двигатель камаза с коробкой

1. Торможение с отдачей энергии в сеть (генераторный режим работы

Рис. 15. Механические характеристики асинхронного двигателя для различных режимов работы.

параллельно с сетью) возможно при скорости выше синхронной. Механические характеристики асинхронного двигателя в координатах М и w) представлены на рис. 15. В квадранте 1 расположены участки характеристик двигательного режима для трех различных сопротивлений роторной цепи. По мере приближения скорости двигателя к скорости идеального холостого хода, или синхронной скорости, момент двигателя приближается к нулю.

При дальнейшем увеличении угловой скорости под влиянием внешнего момента, когда w>w, двигатель работает в режиме генератора параллельно с сетью, которой он может отдавать электрическую энергию, потребляя при этом реактивную мощность для возбуждения. Торможению с отдачей энергии в сеть отвечают участки характеристик, расположенные в верхней части квадранта 2. В этом режиме, как видно из (3.5), максимальный момент имеет большее значение, чем в двигательном. Режим торможения с отдачей энергии в сеть применяется практически для двигателей с переключением полюсов, а также для приводов грузоподъемных машин (подъемники, экскаваторы и т. п.) и в некоторых других случаях.

2. Торможение противовключением имеет значительно большее применение на практике. Режим торможения про­тивовключением может быть получен, так же как и для дви­гателя постоянного тока, при движущем моменте нагрузки Мс > МП (Рис. 15). Для ограничения тока и получения соответствующего момента необходимо при использовании двигателя с фазным ротором в его роторную цепь включить дополнительный резистор. Установившемуся режиму при торможении противовключением соответствует, например, точка — wУСТ, МС на характеристике (рис. 15).

Механическая характеристика для Rp1 в режиме тормо­жения противоаключением и МС == const не обеспечивает устойчивой работы. Торможение противовключением может быть получено также путем переключения на ходу двух фаз обмотки статора, что ведет к перемене направления вра­щения магнитного поля (переход из точки А в точку В на рис. 16). Ротор при этом вращается против направления движения поля и постепенно замедляется. Когда угловая скорость спадет до нуля (точка С на рис. 16), двигатель нужно отключить от сети, иначе он может вновь перейти в двигательный режим, причем ротор его будет вращаться в направлении, обратном предыдущему (точка D).

3. Динамическое торможение асинхронного двигателя осуществляется обычно включением обмотки статора на сеть постоянного тока; обмотка ротора при этом замыкается на внешние резисторы. Для перехода из двигательного режима в режим динамического торможения контактор К1 (рис. 17) отключает статор от сети переменного тока, а контактор К2 присоединяет обмотку статора к сети постоянного тока. Для ограничения тока и получения различных тормозных характеристик в цепи ротора предусмотрены внешние резисторы.

Проходя по обмотке статора, постоянный ток образует неподвижное поле, основная волна которого дает синусоидальное распределение индукции. Во вращающемся роторе возникает переменный ток, создающий свое поле, которое

также неподвижно относительно статора. В результате взаимодействия суммарного магнитного потока с током ротора возникает тормозной момент, который зависит от МДС статора, сопротивления ротора и угловой скорости двигателя. Механические характеристики для этого режима приведены в нижней части квадранта 2 (см. рис. 15). Они проходят через начало координат, так как при угловой скорости, равной нулю, тормозной момент в этом режиме также равен нулю. Максимальный момент пропорционален квадрату приложенного к статору напряжения 1 и возрастает с ростом напряжения. Критическое скольжение зависит от

Рис 16. Механические харак- Рис. 17 Схема включения

Дата добавления: 2014-01-07 ; Просмотров: 4251 ; Нарушение авторских прав?

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Источник