Асинхронного двигателя с короткозамкнутым ротором схема включения 220в

Однофазный асинхронный двигатель с короткозамкнутым ротором с рабочим напряжением 220 вольт — устройство и принцип работы

Потребляемая мощность электроприборов в быту обычно невелика. А значит применение трехфазных потребителей становится излишним. Электроприборы в домах, квартирах и офисах применяются однофазные. Потому в быту для питания электроприборов наиболее часто используется однофазная электросеть напряжением 220-240 вольт. Разумеется, что в бытовых электроприборах применяются однофазные электродвигатели с рабочим напряжением 220 вольт. Очень часто таким двигателем является однофазный асинхронный двигатель с короткозамкнутым ротором.

Устройство асинхронного однофазного электродвигателя

Как и любой другой электрический двигатель, асинхронный однофазный двигатель состоит из двух основных частей. А именно, из ротора и статора. Статор является неподвижной частью асинхронного двигателя . Именно на контактные выводы обмотки статора подаётся питание однофазным переменным током с напряжением 220 вольт. А ротор — это подвижная (вращающаяся) часть асинхронного двигателя. Через ротор, посредством вала, двигатель соединяется с какой-нибудь механической нагрузкой. Как ротор, так и статор электродвигателя, оба состоят из стального сердечника и обмотки. Однофазный асинхронный электродвигатель по конструкции похож на трехфазный асинхронный двигатель. Основное отличие заключается в устройстве обмотки статора двигателя.

Короткозамкнутый ротор асинхронного однофазного электродвигателя

В подавляющем большинстве случаев, бытовые асинхронные однофазные электродвигатели имеют короткозамкнутый ротор. Короткозамкнутый ротор обычно изготавливают нижеописанным способом.

Сердечник ротора спрессовывают из множества круглых листов электротехнической стали. Каждый стальной лист изолируют друг от друга слоем лака. Такой способ изготовления сердечника применяется для уменьшения потерь электроэнергии. Если бы сердечники изготавливались из единого куска стали, то были бы большие потери на образование вихревых токов. То есть, электродвигатель потреблял бы больше электроэнергии, чем ему практически нужно для выполнения работы. А также ротор перегревался бы даже при небольших нагрузках. Однако, все же существует разновидность асинхронных двигателей с массивным ротором.

В итоге, получается конструкция цилиндрической формы с выполненными в ней пазами. Пазы параллельны друг другу. Однако, они не параллельны оси самого ротора. Чаще всего они имеют некоторый перекос направления относительно этой оси. Этот перекос уменьшает высшие гармонические ЭДС, вызванные пульсациями магнитного потока. Такие пульсации происходят из-за того, что магнитное сопротивление зубцов статора и ротора, образованных благодаря пазам, намного ниже магнитного сопротивления обмотки, которая находится в пазах.

То есть, часть ротора, на которой находится обмотка, имеет неоднородную структуру по своей окружности. Сначала сталь, потом алюминий, затем опять сталь и так далее. Потому и магнитное сопротивление на разных участках этой окружности очень отличается. А отсюда пульсации магнитного потока. А скосы позволяют свести к минимуму различие магнитных сопротивлений. И соответственно уменьшатся пульсации. Проще говоря, благодаря такому направлению пазов, работа асинхронного двигателя становится более плавной и менее шумной. К примеру, работа электродвигателя с ротором, у которого нет такого скоса у пазов для обмотки, будет сопровождаться сильным гудением или свистом.

В пазах находятся стержни из сплава алюминия. При изготовлении ротора алюминий впрессовывается или заливается в пазы. С двух сторон цилиндра ротора стержни соединяются (замыкаются) алюминиевыми кольцами. На кольцах могут располагаться лопасти для охлаждения электродвигателя. Алюминиевые стержни и кольца представляют собой обмотку ротора. Такой вид обмотки обычно называется — «беличья клетка». Однако, по форме она скорее напоминает колесо, в котором бегают белки для соблюдения моциона. Обмотка типа «беличья клетка» может иметь некоторые разновидности в своем устройстве.

Статор асинхронного однофазного электродвигателя

Сердечник статора также набран из отдельных стальных листов. По той же причине, что и сердечник ротора. И также на сердечнике статора имеются пазы. В пазах расположена обмотка статора. Но в отличии от обмотки ротора, эта обмотка намотана в пазах медной обмоточной проволокой. Питание переменным током напряжением 220 вольт подключают к обмотке статора. А то, каким образом подключают питание, зависит от особенностей принципа работы однофазного асинхронного электродвигателя с короткозамкнутым ротором.

Принцип работы асинхронного однофазного двигателя

У однофазного асинхронного электродвигателя на статоре обычно находятся две обмотки. Потому как одной обмотки для работы подобного электродвигателя не достаточно. Переменный ток, протекающий по одной обмотке, создает не вращающийся, а пульсирующий магнитный поток. Для удобства объяснения происходящего принято считать этот пульсирующий поток за два вращающихся в противоположные стороны магнитных потока (Φпр и Φобр).

Считается, что благодаря электромагнитной индукции два этих магнитных потока наводят в обмотке ротора две противоположные ЭДС. А эти электродвижущие силы образуют в обмотке ротора два противоположно протекающих тока. То есть, ток прямой и ток обратный (Iпр и Iобр ). Также считается, что каждый из магнитных потоков обуславливает для ротора вращающий электромагнитный момент (Mпр и Mобр). Принято считать, что оба эти вращающих момента равны (Mпр = Mобр). Потому пусковой момент для ротора однофазного асинхронного двигателя равен нулю. Иначе говоря, такой электродвигатель не может самостоятельно запуститься при подаче на рабочую обмотку статора питания.

Чтобы асинхронный однофазный двигатель запустился, нужно во время пуска создать в нем вращающееся магнитное поле. А ведь в электродвигателе уже существует два противоположно вращающихся магнитных поля. То есть, задача состоит в том, чтобы подавить одно из вращающихся магнитных полей. И тогда останется всего один вращающийся магнитный поток. И мы придадим первоначальное вращение ротору. Для этого используется вторая, вспомогательная обмотка и фазосмещающий элемент.

Читайте также:  Дешевое хорошее масло в двигатель

Считается, что вспомогательная обмотка также производит два противоположно вращающихся магнитных поля. Причем, вспомогательная обмотка расположена в стартере особым образом. Ее расположение позволяет взаимно подавлять по одному из магнитных потоков главной и вспомогательной обмотки, вращающихся в одном направлении. А два других потока при этом, наоборот, взаимно усиливают друг друга.

А также, токи в обмотке статора должны быть сдвинуты по фазе относительно друг друга. Для этого и применяется какой-либо фазосмещающий элемент. К примеру, индуктивное сопротивление , активное сопротивление или ёмкость. Чаще всего используется конденсатор.

В результате, на статоре остается только один магнитный поток, который вращается в одну сторону. Этот магнитный поток пронизывает обмотку ротора и индуктирует в ней ЭДС. Электродвижущая сила образует в обмотке ротора протекание электрического тока. Этот электрический ток , в свою очередь, вызывает образования магнитного потока ротора. Другими словами, появляются два магнитных поля неподвижные относительно друг друга. И это, согласно третьему закону электромеханики, приводит к электромеханическому преобразованию. Взаимосвязь потоков придает пусковой момент ротору. То есть, при подаче питания произойдет самостоятельный запуск электродвигателя.

Вспомогательная обмотка располагается перпендикулярно рабочей. То есть, осуществляется сдвиг фазы тока в обмотках на четверть периода. Благодаря такому расположению обмоток и такому сдвигу фаз происходит самостоятельный запуск электродвигателя. (Такого эффекта в трехфазном двигателе добиваются, располагая три обмотки под углом 120°. И там это приводит к сдвигу фаз электрического тока на треть периода.)

При разгоне ротора до определенной скорости, вспомогательную обмотку можно отключить. Ротор все равно продолжит вращаться. Осуществление отключения вспомогательной обмотки обычно проводится центробежным выключателем. То есть, во время пуска двигатель является двухфазным, а затем становится однофазным.

Для того, чтобы получить нужный вращающийся магнитный поток с помощью вспомогательной обмотки, нужно соблюдать два условия:

  • Во-первых, магнитодвижущие силы обоих обмоток должны быть равны и сдвинуты относительно друг друга электрически на 90°.
  • Во-вторых, токи в обмотке статора должны быть сдвинуты по фазе относительно друг друга на 90°. То есть, необходим сдвиг фазы тока в обмотках на четверть периода.

Если выполнять эти условия, то вращающееся поле статора будет круговым. Это обеспечивает наибольший вращающий момент. При нарушении условий вращающееся поле становится эллиптическим. Такое поле ухудшает пуск электродвигателя и создает для ротора тормозной момент.

Если бы не было вспомогательной обмотки, пришлось бы каждый раз электродвигатель запускать вручную. То есть, нужно было бы придавать ему первоначальное вращение. Причем, в какую сторону это вращение бы было придано, в ту сторону и вращался бы ротор. После вращательного толчка он вращался бы самостоятельно, до отключения его от питания.

В асинхронном электродвигателе скорость вращения ротора всегда меньше чем скорость вращения магнитного поля статора. Иначе говоря, магнитное поле статора и ротор вращаются не одновременно и не синхронно. Их вращение не совпадает по времени. Из-за этой особенности подобные двигатели и названы асинхронными.

Однофазные асинхронные двигатели с короткозамкнутым ротором надежны, потому как просты в конструкции. Они дешевы по стоимости изготовления по сравнению с другими видами электродвигателей. А также, удобны для ремонта и обслуживания. Благодаря всем этим преимуществам, однофазный асинхронный электродвигатель находит свое применение во многих бытовых электроприборах.

Конечно, они имеют свои недостатки. Например, при тех же размерах однофазные асинхронные двигатели развивают мощность составляющую максимум 50% от мощности трехфазных асинхронных двигателей. Но для бытовых условий данный недостаток несущественен. Потому как большие мощности в домашних условиях и не нужны. Обычно подобные электродвигатели изготавливают мощностью до 1 киловатта.

Для вашего удобства подборка публикаций

Источник

Подключение трехфазного двигателя к однофазной сети

Асинхронные трехфазные двигатели, а именно их, из-за широкого распространения, часто приходится использовать, состоят из неподвижного статора и подвижного ротора. В пазах статора с угловым расстоянием в 120 электрических градусов уложены проводники обмоток, начала и концы которых (C1, C2, C3, C4, C5 и C6) выведены в распределительную коробку. Обмотки могут быть соединены по схеме «звезда» (концы обмоток соединены между собой, к их началам подводится питающее напряжение) или «треугольник» (концы одной обмотки соединены с началом другой).

В распределительной коробке контакты обычно сдвинуты — напротив С1 не С4, а С6, напротив С2 — С4.

При подключении трехфазного двигателя к трехфазной сети по его обмоткам в разный момент времени по очереди начинает идти ток, создающий вращающееся магнитное поле, которое взаимодействует с ротором, заставляя его вращаться. При включении двигателя в однофазную сеть, вращающий момент, способный сдвинуть ротор, не создается.

Среди разных способов подключения трехфазных электродвигателей в однофазную сеть наиболее простой — подключение третьего контакта через фазосдвигающий конденсатор.

Частота вращения трехфазного двигателя, работающего от однофазной сети, остается почти такой же, как и при его включении в трехфазную сеть. К сожалению, этого нельзя сказать о мощности, потери которой достигают значительных величин. Точные значения потери мощности зависят от схемы подключения, условий работы двигателя, величины емкости фазосдвигающего конденсатора. Ориентировочно, трехфазный двигатель в однофазной сети теряет около 30-50% своей мощности.

Читайте также:  Как иммобилайзер блокирует двигатель ваз 2114

Не все трехфазные электродвигатели способны хорошо работать в однофазных сетях, однако большинство из них справляются с этой задачей вполне удовлетворительно — если не считать потери мощности. В основном для работы в однофазных сетях используются асинхронные двигатели с короткозамкнутым ротором (А, АО2, АОЛ, АПН и др.).

Асинхронные трехфазные двигатели рассчитаны на два номинальных напряжения сети — 220/127, 380/220 и т.д. Наиболее распространены электродвигатели с рабочим напряжением обмоток 380/220В (380В — для «звезды», 220 — для «треугольника). Большее напряжение для «звезды», меньшее — для «треугольника». В паспорте и на табличке двигателей кроме прочих параметров указывается рабочее напряжение обмоток, схема их соединения и возможность ее изменения.

Обозначение на табличке А говорит о том, что обмотки двигателя могут быть подключены как «треугольником» (на 220В), так и «звездой» (на 380В). При включении трехфазного двигателя в однофазную сеть желательно использовать схему «треугольник», поскольку в этом случае двигатель потеряет меньше мощности, чем при подключении «звездой».

Табличка Б информирует, что обмотки двигателя подсоединены по схеме «звезда», и в распределительной коробке не предусмотрена возможность переключить их на «треугольник» (имеется всего лишь три вывода). В этом случае остается или смириться с большой потерей мощности, подключив двигатель по схеме «звезда», или, проникнув в обмотку электродвигателя, попытаться вывести недостающие концы, чтобы соединить обмотки по схеме «треугольник».

Начала и концы обмоток (различные варианты)

Самый простой случай, когда в имеющемся двигателе на 380/220В обмотки уже подключены по схеме «треугольник». В этом случае нужно просто подсоединить токоподводящие провода и рабочий и пусковой конденсаторы к клеммам двигателя согласно схеме подключения.

Если в двигателе обмотки соединены «звездой», и имеется возможность изменить ее на «треугольник», то этот случай тоже нельзя отнести к сложным. Нужно просто изменить схему подключения обмоток на «треугольник», использовав для этого перемычки.

Определение начал и концов обмоток. Дело обстоит сложнее, если в распределительную коробку выведено 6 проводов без указания об их принадлежности к определенной обмотке и обозначения начал и концов. В этом случае дело сводится к решению двух задач (Но прежде чем этим заниматься, нужно попробовать найти в Интернете какую-либо документацию к электродвигателю. В ней может быть описано к чему относятся провода разных цветов.):

  • определению пар проводов, относящихся к одной обмотке;
  • нахождению начала и конца обмоток.

Первая задача решается «прозваниванием» всех проводов тестером (замером сопротивления). Если прибора нет, можно решить её с помощью лампочки от фонарика и батареек, подсоединяя имеющиеся провода в цепь последовательно с лампочкой. Если последняя загорается, значит, два проверяемых конца относятся к одной обмотке. Таким способом определяются три пары проводов (A, B и C на рисунке ниже) относящихся к трем обмоткам.

Вторая задача (определение начала и конца обмоток) несколько сложнее и требует наличия батарейки и стрелочного вольтметра. Цифровой не годится из-за инертности. Порядок определения концов и начал обмоток показан на схемах 1 и 2.

К концам одной обмотки (например, A) подключается батарейка, к концам другой (например, B) — стрелочный вольтметр. Теперь, если разорвать контакт проводов А с батарейкой, стрелка вольтметра качнется в ту или иную сторону. Затем необходимо подключить вольтметр к обмотке С и проделать ту же операцию с разрывом контактов батарейки. При необходимости меняя полярность обмотки С (меняя местами концы С1 и С2) нужно добиться того, чтобы стрелка вольтметра качнулась в ту же сторону, как и в случае с обмоткой В. Таким же образом проверяется и обмотка А — с батарейкой, подсоединенной к обмотке C или B.

В итоге всех манипуляций должно получиться следующее: при разрыве контактов батарейки с любой из обмоток на 2-х других должен появляться электрический потенциал одной и той же полярности (стрелка прибора качается в одну сторону). Теперь остается пометить выводы одного пучка как начала (А1, В1, С1), а выводы другого — как концы (А2, В2, С2) и соединить их по необходимой схеме — «треугольник» или «звезда» (если напряжение двигателя 220/127В).

Извлечение недостающих концов. Пожалуй, самый сложный случай — когда двигатель имеет соединение обмоток по схеме «звезда», и нет возможности переключить ее на «треугольник» (в распределительную коробку выведено всего лишь три провода — начала обмоток С1, С2, С3) (см. рисунок ниже). В этом случае для подключения двигателя по схеме «треугольник» необходимо вывести в коробку недостающие концы обмоток С4, С5, С6.

Чтобы сделать это, обеспечивают доступ к обмотке двигателя, сняв крышку и, возможно, удалив ротор. Отыскивают и освобождают от изоляции место спайки. Разъединяют концы и припаивают к ним гибкие многожильные изолированные провода. Все соединения надежно изолируют, крепят провода прочной нитью к обмотке и выводят концы на клеммный щиток электродвигателя. Определяют принадлежность концов началам обмоток и соединяют по схеме «треугольник», подсоединив начала одних обмоток к концам других (С1 к С6, С2 к С4, С3 к С5). Работа по выводу недостающих концов требует определенного навыка. Обмотки двигателя могут содержать не одну, а несколько спаек, разобраться в которых не так-то и просто. Поэтому если нет должной квалификацией, возможно, не останется ничего иного, как подключить трехфазный двигатель по схеме «звезда», смирившись со значительной потерей мощности.

Схемы подключения трехфазного двигателя в однофазную сеть

Обеспечение пуска. Пуск трехфазного двигателя без нагрузки можно осуществлять и от рабочего конденсатора (подробнее ниже), но если электродвигатель имеет какую-то нагрузку, он или не запустится, или будет набирать обороты очень медленно. Тогда для быстрого пуска необходим дополнительный пусковой конденсатор Сп (расчет емкости конденсаторов описан ниже). Пусковые конденсаторы включаются только на время пуска двигателя (2-3 сек, пока обороты не достигнут примерно 70% от номинальных), затем пусковой конденсатор нужно отключить и разрядить.

Читайте также:  Что может случится если не менять долго масло в двигателе

Удобен запуск трехфазного двигателя с помощью особого выключателя, одна пара контактов которого замыкается при нажатой кнопке. При ее отпускании одни контакты размыкаются, а другие остаются включенными — пока не будет нажата кнопка «стоп».

Реверс. Направление вращения двигателя зависит от того, к какому контакту («фазе») подсоединена третья фазная обмотка.

Направлением вращения можно управлять, подсоединив последнюю, через конденсатор, к двухпозиционному тумблеру, соединенному двумя своими контактами с первой и второй обмотками. В зависимости от положения тумблера двигатель будет вращаться в одну или другую сторону.

На рисунке ниже представлена схема с пусковым и рабочим конденсатором и кнопкой реверса, позволяющая осуществлять удобное управление трехфазным двигателем.

Подключение по схеме «звезда». Подобная схема подключения трехфазного двигателя в сеть с напряжением 220В используется для электродвигателей, у которых обмотки рассчитаны на напряжение 220/127В.

Конденсаторы. Необходимая емкость рабочих конденсаторов для работы трехфазного двигателя в однофазной сети зависит от схемы подключения обмоток двигателя и других параметров. Для соединения «звездой» емкость рассчитывается по формуле:

Для соединения «треугольником»:

Где Ср — емкость рабочего конденсатора в мкФ, I — ток в А, U — напряжение сети в В. Ток рассчитывается по формуле:

Где Р — мощность электродвигателя кВт; n — КПД двигателя; cosф — коэффициент мощности, 1.73 — коэффициент, характеризующий соотношение между линейным и фазным токами. КПД и коэффициент мощности указаны в паспорте и на табличке двигателя. Обычно их значение находится в диапазоне 0,8-0,9.

На практике величину емкости рабочего конденсатора при подсоединении «треугольником» можно посчитать по упрощенной формуле C = 70•Pн, где Pн — номинальная мощность электродвигателя в кВт. Согласно этой формуле на каждые 100 Вт мощности электродвигателя необходимо около 7 мкФ емкости рабочего конденсатора.

Правильность подбора емкости конденсатора проверяется результатами эксплуатации двигателя. Если её значение оказалось больше, чем требуется при данных условиях работы, двигатель будет перегреваться. Если емкость оказалась меньше требуемой, выходная мощность электродвигателя будет слишком низкой. Имеет резон подбирать конденсатор для трехфазного двигателя, начиная с малой емкости и постепенно увеличивая её значение до оптимального. Если есть возможность, лучше подобрать емкость измерением тока в проводах подключенных к сети и к рабочему конденсатору, например токоизмерительными клещами. Значение тока должно быть наиболее близким. Замеры следует производить при том режиме, в котором двигатель будет работать.

При определении пусковой емкости исходят, прежде всего, из требований создания необходимого пускового момента. Не путать пусковую емкость с емкостью пускового конденсатора. На приведенных выше схемах, пусковая емкость равна сумме емкостей рабочего (Ср) и пускового (Сп) конденсаторов.

Если по условиям работы пуск электродвигателя происходит без нагрузки, то пусковая емкость обычно принимается равной рабочей, то есть пусковой конденсатор не нужен. В этом случае схема включения упрощается и удешевляется. Для такого упрощения и главное удешевления схемы, можно организовать возможность отключения нагрузки, например, сделав возможность быстро и удобно изменять положение двигателя для ослабления ременной передачи, или сделав для ременной передачи прижимной ролик, например, как у ременного сцепления мотоблоков.

Пуск под нагрузкой требует наличия дополнительной емкости (Сп) подключаемой на время запуска двигателя. Увеличение отключаемой емкости приводит к возрастанию пускового момента, и при некотором определенном ее значении момент достигает своего наибольшего значения. Дальнейшее увеличение емкости приводит к обратному результату: пусковой момент начинает уменьшаться.

Исходя из условия запуска двигателя под нагрузкой близкой к номинальной, пусковая емкость должна быть в 2-3 раза больше рабочей, то есть, если емкость рабочего конденсатора 80 мкФ, то емкость пускового конденсатора должна быть 80-160 мкФ, что даст пусковую емкость (сумма емкости рабочего и пускового конденсаторов) 160-240 мкФ. Но если двигатель имеет небольшую нагрузку при запуске, емкость пускового конденсатора может быть меньше или, как писалось выше, его вообще может не быть.

Пусковые конденсаторы работают непродолжительное время (всего несколько секунд за весь период включения). Это позволяет использовать при запуске двигателя наиболее дешевые пусковые электролитические конденсаторы, специально предназначенные для этой цели (http://www.platan.ru/cgi-bin/qweryv.pl/0w10609.html).

Отметим, что у двигателя подключенного к однофазной сети через конденсатор, работающего без нагрузки, по обмотке, питаемой через конденсатор, идет ток на 20-30% превышающий номинальный. Поэтому, если двигатель используется в недогруженном режиме, то емкость рабочего конденсатора следует уменьшить. Но тогда, если двигатель запускался без пускового конденсатора, последний может потребоваться.

Лучше использовать не один большой конденсатор, а несколько поменьше, отчасти из-за возможности подбора оптимальной емкости, подсоединяя дополнительные или отключая ненужные, последние можно использовать в качестве пусковых. Необходимое количество микрофарад набирается параллельным соединением нескольких конденсаторов, исходя из того, что суммарная емкость при параллельном соединении подсчитывается по формуле: Cобщ = C1 + C1 + . + Сn.

В качестве рабочих используются обычно металлизированные бумажные или пленочные конденсаторы (МБГО, МБГ4, К75-12, К78-17 МБГП, КГБ, МБГЧ, БГТ, СВВ-60). Допустимое напряжение должно не менее чем в 1,5 раза превышать напряжение сети.

Источник

Adblock
detector