Анимация работа поршневого двигателя

Внутреннее устройство разных типов двигателей (15 гифок)

Вашему вниманию принцип работы разных двигателей в анимашках.


Паровые двигатели были установлены и приводили в движение большую часть паровозов в период начала 1800 и вплоть до 1950 годов прошлого века. Хочется отметить, что принцип работы этих двигателей всегда оставался неизменным, несмотря на изменение их конструкции и габаритов.

Пар из котла поступает в паровую камеру, из которой через паровую задвижку-клапан (обозначена синим цветом) попадает в верхнюю (переднюю) часть цилиндра. Давление, создаваемое паром, толкает поршень вниз к НМТ. Во время движения поршня от ВМТ к НМТ колесо делает пол оборота.В самом конце движения поршня к НМТ паровой клапан смещается, выпуская остатки пара через выпускное окно, расположенное ниже клапана. Остатки пара вырываются наружу, создавая характерный для работы паровых двигателей звук.В то же самое время, смещение клапана на выпуск остатков пара открывает вход пара в нижнюю (заднюю) часть цилиндра. Созданное паром в цилиндре давление заставляет поршень двигаться к ВМТ. В это время колесо делает еще пол оборота.В конце движения поршня к ВМТ остатки пара освобождаются через все то же выпускное окно. Цикл повторяется заново.

Электродвигатель
Вращение вызывается силами магнитного притяжения и отталкивания, действующими между полюсами подвижного электромагнита (ротора) и соответствующими полюсами внешнего магнитного поля, создаваемого неподвижным электромагнитом (или постоянным магнитом) — статором. Сложность заключается в том, чтобы добиться непрерывного вращения двигателя. А для этого надо сделать так, чтобы полюс подвижного электромагнита, притянувшись к противоположному полюсу статора, автоматически менялся на противоположный — тогда ротор не замрет на месте, а повернется дальше — по инерции и под действием возникшего в этот момент отталкивания.

Для автоматического переключения полюсов ротора служит коллектор. Он представляет собой пару закрепленных на валу ротора пластин, к которым подключены обмотки ротора. Ток на эти пластины подается через токоснимающие контакты (щетки). При повороте ротора на 180° пластины меняются местами — это автоматически меняет направление тока и, следовательно, полюсы подвижного электромагнита. Так как одноименные полюсы взаимно отталкиваются, катушка продолжает вращаться, а ее полюсы притягиваются к соответствующим полюсам на другой стороне магнита.

Авиационный двигатель Гнома (Gnome) был один из нескольких популярных роторных двигателей военных самолетов времен Первой Мировой войны. Коленчатый вал этого двигателя крепился к корпусу самолета, в то время как картер и цилиндры вращались вместе с пропеллером.

Двигатель Гнома (Gnome) уникален тем, что его впускные клапана расположены внутри поршня. Работа данного двигателя осуществляется по все известному циклу Отто. В каждой заданной точке каждый цилиндр двигателя находится в различной фазе цикла. На представленном чертеже с зеленым шатуном изображен главный, основной цилиндр.

Преимущества данного двигателя:
Нет необходимости в установке противовесов.
Цилиндры постоянно находятся в движении, что создает хорошее воздушной охлаждения, что позволяет избегать системы
жидкостного охлаждения.
Вращающиеся цилиндры и поршни создают вращающийся момент, что позволяет избегать применение маховика.
Недостатки:
Плохое маневрирование самолета из-за большого веса вращающегося двигателя, т.н гироскопический эффект
Плохая сисема смазки, поскольку центробежные силы заставляи смазочное масло скапливать на перефирии двигателя. Масло
приходилось смешивать с топливом для обеспечения надлежащего смазывания.

Читайте также:  Как снять декоративную накладку двигателя вольво

Для того, чтобы работать в условиях космоса, ракетные двигатели должны иметь собственный запас кислорода для обеспечения сжигания топлива. Топливо-воздушная смесь впрыскивается в камеру сгорания, где происходит ее постоянное сжигание. Образующийся во время сгорания газ под очень большим давлением высвобождается наружу через сопло, создавая реактивную силу и заставляя ракетный двигатель, а вместе с ним и ракету двигаться в противоположном направлении.

Турбореактивный двигатель (ТРД)

Топливо постоянно сжигается внутри камеры сгорания турбины. Освобождающийся через сопло газ создает реактивную силу.На выходе из сопла установлены несколко ступеней турбины, закрепленные на общем валу. проходя через лопатки турбин газ приводит их во вращение. Между колесами турбин установлены неподвижные направляющие лопатки, которые придаю определенное направление потоку газа на пути ко следующей ступени (колесу) турбины, что создает более эффективное вращение.Вместе с турбиной на едином валу в передней части двигателя установлен компрессор, который служит для сжатия и подачи воздуха в камеру сгорания.

Турбовинтовой двигатель (ТВД).

На валу перед компрессором установлен редуктор, приводящий во вращение воздушный винт с более низкими оборотами, чем турбина. Получение мощности, необходимой для вращения ротора компрессора и воздушного винта, обеспечивается турбиной с увеличенным числом ступеней, поэтому расширение газа в турбине происходит почти полностью и реактивная тяга, получаемая за счет реакции газовой струи, вытекающей из двигателя, составляет только 10–15% суммарной тяги, в то время как воздушный винт создает основное тяговое усилие (85–90%).

Турбовентиляторный двигатель (ТВлД)

Этот двигатель является неким копромиссом между турбореактивным и турбовинтовым двигателем. У турбовентиляторного двигателя (ТВлД) на валу перед компрессором установлен вентилятор, имеющий большее количество лопаток, чем воздушный винт и обеспечивающий высокий расход воздуха через двигатель на всех скоростях полета, включая низкие скорости при взлете.

Двухтактный оппозитный двигатель (два поршня встречного движения в одном цилиндре).

Источник

Познавательная анимация механизмов и устройств

Карданово соединение (шарнир Гука).
В автомобиле карданный вал служит для передачи крутящего момента от коробки передач (раздаточной коробки) к ведущим мостам в случае классической или полноприводной компоновки. Также используется в травмобезопасной рулевой колонке для соединения рулевого вала и рулевого исполнительного механизма (рулевого редуктора или рулевой рейки).

Четырехтактный двигатель внутреннего сгорания:
(1-впуск, 2-сжатие, 3-рабочий ход, 4-выпуск)

Рядный четырехцилиндровый двигатель внутреннего сгорания:

Двухтактный двигатель внутреннего сгорания с глушителем:

Роторно-лопастной двигатель внутреннего сгорания:

Радиальный двигатель — поршневой двигатель внутреннего сгорания, цилиндры которого расположены радиальными лучами вокруг одного коленчатого вала через равные углы:

Роторно-поршневой двигатель внутреннего сгорания (двигатель Ванкеля):

Бесшатунный двигатель Вуля:

Электродвигатель. При включении в сеть в статоре возникает круговое вращающееся магнитное поле, которое пронизывает короткозамкнутую обмотку ротора и наводит в ней ток индукции. Отсюда, следуя закону Ампера, ротор приходит во вращение

Двигатель Стерлинга. тепловая машина, в которой жидкое или газообразное рабочее тело движется в замкнутом объёме, разновидность двигателя внешнего сгорания.

Работа парового двигателя:

Паровая машина — тепловой двигатель внешнего сгорания:

Паровая машина для откачивания воды из шахты:

Это знакомо всем девушкам, наверное))) Швейная машинка:

Принцип работы пейнтбольного маркера:

Механизм перезарядки пистолета:

Бортовое орудие на эсминцах:

Бесшатунный двигатель Фролова (в этом двигателе нет коленвала):

Мальтийский механизм (механизм прерывистого движения). Основное применение механизм получил в кинопроекторах в качестве скачкового механизма для прерывистого перемещения киноплёнки на шаг кадра.

Читайте также:  Как и из чего собрать 16 клапанный двигатель

Шарнир равных угловых скоростей. Используется в системах привода управляемых колёс легковых автомобилей с независимой подвеской и, реже, задних колёс.

Винт Архимеда — механизм, исторически использовавшийся для передачи воды из низколежащих водоёмов в оросительные каналы.

Схема работы атомной электростанции с двухконтурным водо-водяным энергетическим реактором. Энергия, выделяемая в активной зоне реактора, передаётся теплоносителю первого контура. Далее теплоноситель поступает в теплообменник (парогенератор), где нагревает до кипения воду второго контура. Полученный при этом пар поступает в турбины, вращающие электрогенераторы. На выходе из турбин пар поступает в конденсатор, где охлаждается большим количеством воды, поступающим из водохранилища.
Компенсатор давления представляет собой довольно сложную и громоздкую конструкцию, которая служит для выравнивания колебаний давления в контуре во время работы реактора, возникающих за счёт теплового расширения теплоносителя.

Принцип работы кольцевого замкового устройства, которое используется в парашютах:

Схема действия гейзера. Деятельность гейзера характеризуется периодической повторяемостью покоя, наполнения котловинки водой, фонтанирования пароводяной смеси и интенсивных выбросов пара, постепенно сменяющихся спокойным их выделением, прекращением выделения пара и наступлением стадии покоя.

Схема работы женской логики. Данный механизм широко распространен среди некоторых особей женского пола.

Источник

Просто о сложном: что заставляет двигатель работать?

В скольких десятках статей мы с вами, друзья, обсуждали нюансы работы двигателя внутреннего сгорания. ГРМ, форсунки, зажигание, выпуск. Но не разбирали главного: а как это всё взаимосвязано, так сказать, глобально? Как работает ДВС в принципе? За счёт чего он «крутится» и не останавливается, пока не повернёшь ключ? Вот сегодня и рассмотрим этот коренной момент. Да, в сети есть гигатонны статей на эту тему, но они, на мой взгляд, по большей части занудны и не всегда понятны. Я же попробую рассказать «на пальцах», как всегда. Ну и анимация нам в помощь.

Что двигается внутри?

Есть некая идеально-выточенная (до тысячных долей миллиметра) «труба». Это цилиндр (что очевидно по геометрической форме). В него очень плотно вставляется цилиндрическая же подвижная часть — это поршень. Поршень непрерывно и циклически передвигается вверх-вниз по своей «трубе», и будучи связан некой палкой на двух осях с коленчатым валом , вращает его. Палка называется шатун , и превращает возвратно-поступательное движение поршня (то есть вверх-вниз) во вращательное движение коленчатого вала (по кругу).

Наверху, над поршнями, есть два вала называемых распределительными . Они «намертво» связаны с коленчатым валом цепью или ремнём, и вращаются всегда одновременно с ним. Задача распредвалов — вовремя открывать и закрывать клапаны над поршнями. Зачем нужны клапаны? Об этом далее.

За счёт чего двигаются поршни?

Чтобы толкнуть поршень вниз — то есть, заставить его надавить на шатун и провернуть коленчатый вал (коленвал) — необходима некая сила, которая вынудит его это сделать. В случае с двигателем внутреннего сгорания, это химическая энергия горения топлива, преобразуемая в механическую энергию движения поршней и всего остального. Но я обещал просто. Итак, что происходит в цилиндрах.

1) Сначала в цилиндр (для упрощения считаем его полностью герметичным) нужно добавить то, что будет гореть. Конечно, это топливо (в нашем случае бензин). Но ни один бензин не будет гореть в безвоздушной среде. Необходим окислитель — кислород, содержащийся в воздухе. Значит, подаём в цилиндр смесь бензина и воздуха. На этом этапе у нас открыт впускной клапан , откуда эта гремучая смесь и поступает. При этом цилиндр движется вниз, буквально засасывая эту смесь через клапан (как шприц воду, или тот же воздух). Этот такт называется впуск .

Логично спросить: ну а в самом начале-то, за счёт чего поршень движется вниз, если машина была незаведённой?! Отвечаю — есть такая штука как стартер, работающий автономно, от аккумулятора. Он и заставляет мотор сделать «первый вдох» с поворотом ключа на «старт». Стартер раскручивает коленвал тупо механически, своей шестерёнкой за маховик (это такое большое чугунное колесо в торце коленвала).

2) Отлично, взрывоопасная смесь в цилиндре! Но поршень-то уже внизу, а чтобы он начал «давить» на коленвал через шатун, он должен быть наверху! Да. Поэтому, за счёт движения других цилиндров (они обычно работают парно и асинхронно: два вверху, два внизу) и за счёт инерции вращения тяжеленного маховика , поршень снова идёт вверх. При этом, впускной клапан закрывается. Получается, что поршень, двигаясь вверх, сжимает топливовоздушную смесь в цилиндре. При этом она, по всем законам физики, ещё и нагревается. Этот такт называется сжатие . Всё логично и не так сложно, не правда ли? 🙂

Читайте также:  Можно поставить другой двигатель ока

3) Все мы знаем о свечах зажигания . Когда поршень, дойдя до верха, максимально сжал смесь, свеча даёт электродугу (искру). Её достаточно для того, чтобы смесь воспламенилась. При этом мы помним, что так как она была неслабо сжата поршнем (скажем, в 10 раз от первоначального объёма), то и без того находилась под давлением. А учитывая что смесь ещё и горючая. В общем, взрыв, возникающий в цилиндре, вызывает резкое расширение газов . А так как на данном этапе камера сгорания герметична (все клапаны закрыты), единственный «выход» для этих газов — продавить подвижный поршень вниз. Это и есть тот момент, когда на поршень давят сгораемые газы, а поршень через шатун крутит коленвал, совершая полезную работу. Такт рабочего хода .

4) Ну и «финал-апофеоз» происходящего. Логично, что теперь продукты сгорания нужно вытолкнуть из цилиндра и повторить цикл заново. Когда поршень дошёл до нижней точки и совершил работу, он снова начинает двигаться вверх (помним, что другие поршни тоже трудятся и коленвал вращается непрерывно). Но теперь уже не сжимая заготовленную смесь, а выталкивая отработанные газы. Для этого на данном этапе открывается выпускной клапан, а далее газы поступают в выпускной тракт и на улицу, через выхлопную трубу. Вы удивитесь, но это называется такт выпуска .

Ну а далее всё снова повторяется: дойдя до верха, поршень снова бежит вниз, засасывая свежий воздух вперемешку с бензином.

А «следит» за этим делом всё тот же механизм ГРМ, который строго в нужный момент открывает и закрывает нужные клапаны (на впуск и выпуск). Подробнее об этом мы уже разговаривали здесь .
К слову, теперь понятно, почему двигатель называется четырёхтактный .

Надеюсь, кому-то будет полезно!
Всем исправных двигателей и понятной матчасти!

P.S.: Друзья, буду очень рад лайкам и подписке!

Данная статья публикуется исключительно на Я.Дзен OVER 9000

Источник

Adblock
detector